LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 1 of total 1

Search options

Article ; Online: Curcumin interferes with chitin synthesis in Aedes aegypti: a computational and experimental investigation.

Rao, Priyashi / Ninama, Jinal / Dudhat, Mansi / Goswami, Dweipayan / Rawal, Rakesh M

Molecular diversity

2023  

Abstract: Throughout history, vector-borne diseases have consistently posed significant challenges to human health. Among the strategies for vector control, chemical insecticides have seen widespread use since their inception. Nevertheless, their effectiveness is ... ...

Abstract Throughout history, vector-borne diseases have consistently posed significant challenges to human health. Among the strategies for vector control, chemical insecticides have seen widespread use since their inception. Nevertheless, their effectiveness is continually undermined by the steady growth of insecticide resistance within these vector populations. As such, the demand for more robust, efficient, and cost-effective natural insecticides has become increasingly pressing. One promising avenue of research focuses on chitin, a crucial structural component of mosquitoes' exoskeletons and other insects. Chitin not only provides protection and rigidity but also lends flexibility to the insect body. It undergoes substantial transformations during insect molting, a process known as ecdysis. Crucially, the production of chitin is facilitated by an enzyme known as chitin synthase, making it an attractive target for potential novel insecticides. Our recent study delved into the impacts of curcumin, a natural derivative of turmeric, on chitin synthesis and larval development in Aedes aegypti, a mosquito species known to transmit dengue and yellow fever. Our findings demonstrate that even sub-lethal amounts of curcumin can significantly reduce overall chitin content and disrupt the cuticle development in the 4th instar larvae of Aedes aegypti. Further to this, we utilized computational analyses to investigate how curcumin interacts with chitin synthase. Techniques such as molecular docking, pharmacophore feature mapping, and molecular dynamics (MD) simulations helped to illustrate that curcumin binds to the same site as polyoxin D, a recognized inhibitor of chitin synthase. These findings point to curcumin's potential as a natural, bioactive larvicide that targets chitin synthase in mosquitoes and potentially other insects.
Language English
Publishing date 2023-06-26
Publishing country Netherlands
Document type Journal Article
ZDB-ID 1376507-3
ISSN 1573-501X ; 1381-1991
ISSN (online) 1573-501X
ISSN 1381-1991
DOI 10.1007/s11030-023-10672-0
Shelf mark
Zs.A 4946: Show issues Location:
Je nach Verfügbarkeit (siehe Angabe bei Bestand)
bis Jg. 1994: Bestellungen von Artikeln über das Online-Bestellformular
Jg. 1995 - 2021: Lesesall (2.OG)
ab Jg. 2022: Lesesaal (EG)
Database MEDical Literature Analysis and Retrieval System OnLINE

More links

Kategorien

To top