LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 7 of total 7

Search options

  1. Article ; Online: Spiral sound-diffusing metasurfaces based on holographic vortices

    Noé Jiménez / Jean-Philippe Groby / Vicent Romero-García

    Scientific Reports, Vol 11, Iss 1, Pp 1-

    2021  Volume 13

    Abstract: Abstract In this work, we show that scattered acoustic vortices generated by metasurfaces with chiral symmetry present broadband unusual properties in the far-field. These metasurfaces are designed to encode the holographic field of an acoustical vortex, ...

    Abstract Abstract In this work, we show that scattered acoustic vortices generated by metasurfaces with chiral symmetry present broadband unusual properties in the far-field. These metasurfaces are designed to encode the holographic field of an acoustical vortex, resulting in structures with spiral geometry. In the near field, phase dislocations with tuned topological charge emerge when the scattered waves interference destructively along the axis of the spiral metasurface. In the far field, metasurfaces based on holographic vortices inhibit specular reflections because all scattered waves also interfere destructively in the normal direction. In addition, the scattering function in the far field is unusually uniform because the reflected waves diverge spherically from the holographic focal point. In this way, by triggering vorticity, energy can be evenly reflected in all directions except to the normal. As a consequence, the designed metasurface presents a mean correlation-scattering coefficient of 0.99 (0.98 in experiments) and a mean normalized diffusion coefficient of 0.73 (0.76 in experiments) over a 4 octave frequency band. The singular features of the resulting metasurfaces with chiral geometry allow the simultaneous generation of broadband, diffuse and non-specular scattering. These three exceptional features make spiral metasurfaces extraordinary candidates for controlling acoustic scattering and generating diffuse sound reflections in several applications and branches of wave physics as underwater acoustics, biomedical ultrasound, particle manipulation devices or room acoustics.
    Keywords Medicine ; R ; Science ; Q
    Subject code 535
    Language English
    Publishing date 2021-05-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Generating Bessel beams with broad depth-of-field by using phase-only acoustic holograms

    Sergio Jiménez-Gambín / Noé Jiménez / José M. Benlloch / Francisco Camarena

    Scientific Reports, Vol 9, Iss 1, Pp 1-

    2019  Volume 13

    Abstract: Abstract We report zero-th and high-order acoustic Bessel beams with broad depth-of-field generated using acoustic holograms. While the transverse field distribution of Bessel beams generated using traditional passive methods is correctly described by a ... ...

    Abstract Abstract We report zero-th and high-order acoustic Bessel beams with broad depth-of-field generated using acoustic holograms. While the transverse field distribution of Bessel beams generated using traditional passive methods is correctly described by a Bessel function, these methods present a common drawback: the axial distribution of the field is not constant, as required for ideal Bessel beams. In this work, we experimentally, numerically and theoretically report acoustic truncated Bessel beams of flat-intensity along their axis in the ultrasound regime using phase-only holograms. In particular, the beams present a uniform field distribution showing an elongated focal length of about 40 wavelengths, while the transverse width of the beam remains smaller than 0.7 wavelengths. The proposed acoustic holograms were compared with 3D-printed fraxicons, a blazed version of axicons. The performance of both phase-only holograms and fraxicons is studied and we found that both lenses produce Bessel beams in a wide range of frequencies. In addition, high-order Bessel beam were generated. We report first order Bessel beams that show a clear phase dislocation along their axis and a vortex with single topological charge. The proposed method may have potential applications in ultrasonic imaging, biomedical ultrasound and particle manipulation applications using passive lenses.
    Keywords Medicine ; R ; Science ; Q
    Subject code 535
    Language English
    Publishing date 2019-12-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Scattering Evaluation of Equivalent Surface Impedances of Acoustic Metamaterials in Large FDTD Volumes Using RLC Circuit Modelling

    Eric Ballestero / Brian Hamilton / Noé Jiménez / Vicent Romero-García / Jean-Philippe Groby / Haydar Aygun / Stephen Dance

    Applied Sciences, Vol 11, Iss 8084, p

    2021  Volume 8084

    Abstract: Most simulations involving metamaterials often require complex physics to be solved through refined meshing grids. However, it can prove challenging to simulate the effect of local physical conditions created by said metamaterials into much wider ... ...

    Abstract Most simulations involving metamaterials often require complex physics to be solved through refined meshing grids. However, it can prove challenging to simulate the effect of local physical conditions created by said metamaterials into much wider computing sceneries due to the increased meshing load. We thus present in this work a framework for simulating complex structures with detailed geometries, such as metamaterials, into large Finite-Difference Time-Domain (FDTD) computing environments by reducing them to their equivalent surface impedance represented by a parallel-series RLC circuit. This reduction helps to simplify the physics involved as well as drastically reducing the meshing load of the model and the implicit calculation time. Here, an emphasis is made on scattering comparisons between an acoustic metamaterial and its equivalent surface impedance through analytical and numerical methods. Additionally, the problem of fitting RLC parameters to complex impedance data obtained from transfer matrix models is herein solved using a novel approach based on zero crossings of admittance phase derivatives. Despite the simplification process, the proposed framework achieves good overall results with respect to the original acoustic scatterer while ensuring relatively short simulation times over a vast range of frequencies.
    Keywords metamaterials ; metadiffusers ; scattering ; finite-difference time-domain (FDTD) ; Technology ; T ; Engineering (General). Civil engineering (General) ; TA1-2040 ; Biology (General) ; QH301-705.5 ; Physics ; QC1-999 ; Chemistry ; QD1-999
    Subject code 621
    Language English
    Publishing date 2021-08-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Iridescent Perfect Absorption in Critically-Coupled Acoustic Metamaterials Using the Transfer Matrix Method

    Noé Jiménez / Jean-Philippe Groby / Vincent Pagneux / Vicent Romero-García

    Applied Sciences, Vol 7, Iss 6, p

    2017  Volume 618

    Abstract: The absorption performance of a locally-reacting acoustic metamaterial under oblique incidence is studied. The metamaterial is composed of a slotted panel, each slit being loaded by an array of Helmholtz resonators. The system is analytically studied ... ...

    Abstract The absorption performance of a locally-reacting acoustic metamaterial under oblique incidence is studied. The metamaterial is composed of a slotted panel, each slit being loaded by an array of Helmholtz resonators. The system is analytically studied using the transfer matrix method, accounting for the viscothermal losses both in the resonator elements and in the slits, allowing the representation of the reflection coefficient in the complex frequency plane. We show that by tuning the geometry of the metamaterial, perfect absorption peaks can be obtained on demand at selected frequencies and different angles of incidence. When tilting the incidence angle, the peaks of perfect absorption are shifted in frequency, producing an acoustic iridescence effect similar to the optic iridescence achieved by incomplete band gap. Effectively, we show that in this kind of locally-reacting metamaterial, perfect and omnidirectional absorption for a given frequency is impossible to achieve because the metamaterial impedance does not depend on the incidence angle (i.e., the impedance is a locally reacting one). The system is interpreted in the complex frequency plane by analysing the trajectories of the zeros of the reflection coefficient. We show that the trajectories of the zeros do not overlap under oblique incidence, preventing the observation of perfect and omnidirectional absorption in locally reacting metamaterials. Moreover, we show that for any locally resonant material, the absorption in diffuse field takes a maximal value of 0.951, which is achieved by a material showing perfect absorption for an incidence angle of 50.34 degrees.
    Keywords perfect absorption ; acoustic metamaterials ; sound absorbers ; iridescence ; oblique incidence ; transfer matrix method ; Technology ; T ; Engineering (General). Civil engineering (General) ; TA1-2040 ; Biology (General) ; QH301-705.5 ; Physics ; QC1-999 ; Chemistry ; QD1-999
    Subject code 535
    Language English
    Publishing date 2017-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Metadiffusers

    Noé Jiménez / Trevor J. Cox / Vicent Romero-García / Jean-Philippe Groby

    Scientific Reports, Vol 7, Iss 1, Pp 1-

    Deep-subwavelength sound diffusers

    2017  Volume 12

    Abstract: Abstract We present deep-subwavelength diffusing surfaces based on acoustic metamaterials, namely metadiffusers. These sound diffusers are rigidly backed slotted panels, with each slit being loaded by an array of Helmholtz resonators. Strong dispersion ... ...

    Abstract Abstract We present deep-subwavelength diffusing surfaces based on acoustic metamaterials, namely metadiffusers. These sound diffusers are rigidly backed slotted panels, with each slit being loaded by an array of Helmholtz resonators. Strong dispersion is produced in the slits and slow sound conditions are induced. Thus, the effective thickness of the panel is lengthened introducing its quarter wavelength resonance in the deep-subwavelength regime. By tuning the geometry of the metamaterial, the reflection coefficient of the panel can be tailored to obtain either a custom reflection phase, moderate or even perfect absorption. Using these concepts, we present ultra-thin diffusers where the geometry of the metadiffuser has been tuned to obtain surfaces with spatially dependent reflection coefficients having uniform magnitude Fourier transforms. Various designs are presented where, quadratic residue, primitive root and ternary sequence diffusers are mimicked by metadiffusers whose thickness are 1/46 to 1/20 times the design wavelength, i.e., between about a twentieth and a tenth of the thickness of traditional designs. Finally, a broadband metadiffuser panel of 3 cm thick was designed using optimization methods for frequencies ranging from 250 Hz to 2 kHz.
    Keywords Medicine ; R ; Science ; Q
    Subject code 535
    Language English
    Publishing date 2017-07-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: On the Evaluation of the Suitability of the Materials Used to 3D Print Holographic Acoustic Lenses to Correct Transcranial Focused Ultrasound Aberrations

    Marcelino Ferri / José María Bravo / Javier Redondo / Sergio Jiménez-Gambín / Noé Jiménez / Francisco Camarena / Juan Vicente Sánchez-Pérez

    Polymers, Vol 11, Iss 9, p

    2019  Volume 1521

    Abstract: The correction of transcranial focused ultrasound aberrations is a relevant topic for enhancing various non-invasive medical treatments. Presently, the most widely accepted method to improve focusing is the emission through multi-element phased arrays; ... ...

    Abstract The correction of transcranial focused ultrasound aberrations is a relevant topic for enhancing various non-invasive medical treatments. Presently, the most widely accepted method to improve focusing is the emission through multi-element phased arrays; however, a new disruptive technology, based on 3D printed holographic acoustic lenses, has recently been proposed, overcoming the spatial limitations of phased arrays due to the submillimetric precision of the latest generation of 3D printers. This work aims to optimize this recent solution. Particularly, the preferred acoustic properties of the polymers used for printing the lenses are systematically analyzed, paying special attention to the effect of p-wave speed and its relationship to the achievable voxel size of 3D printers. Results from simulations and experiments clearly show that, given a particular voxel size, there are optimal ranges for lens thickness and p-wave speed, fairly independent of the emitted frequency, the transducer aperture, or the transducer-target distance.
    Keywords 3D printed lenses ; focused ultrasound ; transcranial ultrasound ; single-element transducer ; transcranial therapy ; Organic chemistry ; QD241-441
    Subject code 600
    Language English
    Publishing date 2019-09-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: 5th International Symposium on Focused Ultrasound

    Menashe Zaaroor / Alon Sinai / Dorit Goldsher / Ayelet Eran / Maria Nassar / Ilana Schlesinger / Jonathon Parker / Vinod Ravikumar / Pejman Ghanouni / Sherman Stein / Casey Halpern / Vibhor Krishna / Amelia Hargrove / Punit Agrawal / Barbara Changizi / Eric Bourekas / Michael Knopp / Ali Rezai / Brian Mead /
    Namho Kim / Panagiotis Mastorakos / Jung Soo Suk / Wilson Miller / Alexander Klibanov / Justin Hanes / Richard Price / Shutao Wang / Oluyemi Olumolade / Tara Kugelman / Vernice Jackson-Lewis / Maria Eleni (Marilena) Karakatsani / Yang Han / Serge Przedborski / Elisa Konofagou / Kullervo Hynynen / Isabelle Aubert / Gerhard Leinenga / Rebecca Nisbet / Robert Hatch / Anneke Van der Jeugd / Harrison Evans / Jürgen Götz / Ann Van der Jeugd / Paul Fishman / Paul Yarowsky / Victor Frenkel / Shen Wei-Bin / Ben Nguyen / Carlos Sierra Sanchez / Camilo Acosta / Cherry Chen / Shih-Ying Wu / Muna Aryal / Iason T. Papademetriou / Yong-Zhi Zhang / Chanikarn Power / Nathan McDannold / Tyrone Porter / Zsofia Kovacs / Saejeong Kim / Neekita Jikaria / Farhan Qureshi / Michele Bresler / Joseph Frank / Henrik Odéen / George Chiou / John Snell / Nick Todd / Bruno Madore / Dennis Parker / Kim Butts Pauly / Mike Marx / Sumeeth Jonathan / William Grissom / Costas Arvanitis / Gregory Clement / Joshua de Bever / Allison Payne / Douglas Christensen / Guillaume Maimbourg / Mathieu David Santin / Alexandre Houdouin / Stéphane Lehericy / Mickael Tanter / Jean Francois Aubry / Christian Federau / Beat Werner / Dong-Guk Paeng / Zhiyuan Xu / Anders Quigg / Matt Eames / Changzhu Jin / Ashli Everstine / Jason Sheehan / M. Beatriz Lopes / Neal Kassell / James Drake / Karl Price / Lior Lustgarten / Vivian Sin / Charles Mougenot / Elizabeth Donner / Emily Tam / Mojgan Hodaie / Adam Waspe / Thomas Looi / Samuel Pichardo / Wonhye Lee / Yong An Chung / Yujin Jung / In-Uk Song / Seung-Schik Yoo / Hyun-Chul Kim / Jong-Hwan Lee / Charles Caskey / Wolf Zinke / Josh Cosman / Jillian Shuman / Jeffrey Schall / Christian Aurup / Hong Chen / Hermes Kamimura / Antonio Carneiro / Tao Sun / Navid Nazai / Sam Patz / Margaret Livingstone / Todd Mainprize / Yuexi Huang / Ryan Alkins / Martin Chapman / James Perry / Nir Lipsman / Allison Bethune / Arjun Sahgal / Maureen Trudeau / Hao-Li Liu / Po-Hung Hsu / Kuo-Chen Wei / Jonathan Sutton / Phillip Alexander / Eric Miller / Thiele Kobus / Alexandre Carpentier / Michael Canney / Alexandre Vignot / Kevin Beccaria / Delphine Leclercq / Cyril Lafon / Jean Yves Chapelon / Khe Hoang-Xuan / Jean-Yves Delattre / Ahmed Idbaih / David Moore / Alexis Xu / Paul Schmitt / Jessica Foley / Jonathan Sukovich / Charles Cain / Aditya Pandey / Neeraj Chaudhary / Sandra Camelo-Piragua / Steven Allen / Jon Cannata / Dejan Teofilovic / Jim Bertolina / Timothy Hall / Zhen Xu / Julien Grondin / Vincent Ferrera / Gail ter Haar / Petros Mouratidis / Elizabeth Repasky / Kelsie Timbie / Lena Badr / Benjamin Campbell / John McMichael / Andrew Buckner / Jessica Prince / Aaron Stevens / Timothy Bullock / Karin Skalina / Chandan Guha / Franco Orsi / Guido Bonomo / Paolo Della Vigna / Giovanni Mauri / Gianluca Varano / George Schade / Yak-Nam Wang / Venu Pillarisetty / Joo Ha Hwang / Vera Khokhlova / Michael Bailey / Tatiana Khokhlova / Ilya Sinilshchikov / Petr Yuldashev / Yulia Andriyakhina / Wayne Kreider / Adam Maxwell / Oleg Sapozhnikov / Ari Partanen / Jonathan Lundt / Tobias Preusser / Sabrina Haase / Mario Bezzi / Jürgen Jenne / Thomas Langø / Massimo Midiri / Michael Mueller / Giora Sat / Christine Tanner / Stephan Zangos / Matthias Guenther / Andreas Melzer / Arianna Menciassi / Selene Tognarelli / Andrea Cafarelli / Alessandro Diodato / Gastone Ciuti / Sven Rothluebbers / Julia Schwaab / Jan Strehlow / Senay Mihcin / Steffen Tretbar / Thomas Payen / Carmine Palermo / Steve Sastra / Kenneth Olive / Matthew Adams / Vasant Salgaonkar / Serena Scott / Graham Sommer / Chris Diederich / Joan Vidal-Jove / Eloi Perich / Antonio Ruiz / Manuela Velat / David Melodelima / Aurelien Dupre / Jeremy Vincenot / Chen Yao / David Perol / Michel Rivoire / Samantha Tucci / Lisa Mahakian / Brett Fite / Elizabeth Ingham / Sarah Tam / Chang-il Hwang / David Tuveson / Katherine Ferrara / Stephen Scionti / Lili Chen / Dusica Cvetkovic / Xiaoming Chen / Roohi Gupta / Bin Wang / Charlie Ma / Kenneth Bader / Kevin Haworth / Christy Holland / Narendra Sanghvi / Roy Carlson / Wohsing Chen / Christian Chaussy / Stefan Thueroff / Claudio Cesana / Carlo Bellorofonte / Qingguo Wang / Han Wang / Shengping Wang / Junhai Zhang / Alberto Bazzocchi / Alessandro Napoli / Robert Staruch / Chenchen Bing / Sumbul Shaikh / Joris Nofiele / Debra Szczepanski / Michelle Wodzak Staruch / Noelle Williams / Theodore Laetsch / Rajiv Chopra / Jarrett Rosenberg / Rachelle Bitton / Suzanne LeBlang / Joshua Meyer / Mark Hurwitz / Pavel Yarmolenko / Haydar Celik / Avinash Eranki / Viktoriya Beskin / Domiciano Santos / Janish Patel / Matthew Oetgen / AeRang Kim / Peter Kim / Karun Sharma / Alexander Chisholm / Dionne Aleman / Roberto Scipione / Michael Temple / Joao Guilherme Amaral / Ruby Endre / Maria Lamberti-Pasculli / Joost de Ruiter / Fiona Campbell / Jennifer Stimec / Samit Gupta / Manoj Singh / Sevan Hopyan / Gregory Czarnota / David Brenin / Carrie Rochman / Roussanka Kovatcheva / Jordan Vlahov / Katja Zaletel / Julian Stoinov / Matthew Bucknor / Viola Rieke / Jenny Shim / Korgun Koral / Brian Lang / Carlos Wong / Heather Lam / Alexander Shinkov / Jim Hu / Xi Zhang / Jonathan Macoskey / Kimberly Ives / Gabe Owens / Hitinder Gurm / Jiaqi Shi / Matthew Pizzuto / Christopher Dillon / Ivy Christofferson / Elaine Hilas / Jill Shea / Paul Greillier / Bénédicte Ankou / Francis Bessière / Ali Zorgani / Mathieu Pioche / Wojciech Kwiecinski / Julie Magat / Sandrine Melot-Dusseau / Romain Lacoste / Bruno Quesson / Mathieu Pernot / Stefan Catheline / Philippe Chevalier / Fabrice Marquet / Pierre Bour / Fanny Vaillant / Sana Amraoui / Rémi Dubois / Philippe Ritter / Michel Haïssaguerre / Mélèze Hocini / Olivier Bernus / Pamela Tebebi / Scott Burks / Blerta Milo / Michael Gertner / Jimin Zhang / Andrew Wong / Yu Liu / Azadeh Kheirolomoom / Jai Seo / Katherine Watson / Hua Zhang / Josquin Foiret / Alexander Borowsky / Doudou Xu / Maya Thanou / Miguell Centelles / Mike Wright / Maral Amrahli / Po-Wah So / Wladyslaw Gedroyc / Esther Kneepkens / Edwin Heijman / Jochen Keupp / Steffen Weiss / Klaas Nicolay / Holger Grüll / Matthew Nagle / Anastasia V. Nikolaeva / Marina E. Terzi / Sergey A. Tsysar / Bryan Cunitz / Pierre Mourad / Matthew Downs / Georgiana Yang / Qi Wang / Johnny Chen / Justin Farry / Adam Dixon / Zhongmin Du / Ali Dhanaliwala / John Hossack / Ashish Ranjan / Danny Maples / Rachel Wardlow / Jerry Malayer / Akhilesh Ramachandran / Hirofumi Namba / Motohiro Kawasaki / Masashi Izumi / Katsuhito Kiyasu / Ryuichi Takemasa / Masahiko Ikeuchi / Takahiro Ushida / Calum Crake / Satya V. V. N. Kothapalli / Wan Leighton / Zhaorui Wang / H. Michael Gach / William Straube / Michael Altman / Young-sun Kim / Hyo Keun Lim / Hyunchul Rhim / Johanna van Breugel / Manon Braat / Chrit Moonen / Maurice van den Bosch / Mario Ries / Cristina Marrocchio / Susan Dababou / Jae Young Lee / Hyun Hoon Chung / Soo Yeon Kang / Kook Jin Kang / Keon Ho Son / Dandan Zhang / Juan Plata / Peter Jones / Aurea Pascal-Tenorio / Donna Bouley / Aaron Bond / Robert Dallapiazza / Diane Huss / Amy Warren / Scott Sperling / Ryder Gwinn / Binit Shah / W. Jeff Elias / Colleen Curley / Ying Zhang / Karina Negron / Roger Abounader / Gesthimani Samiotaki / Tsang-Wei Tu / Georgios Papadakis / Dima Hammoud / Matthew Silvestrini / Frank Wolfram / Daniel Güllmar / Juergen Reichenbach / Denis Hofmann / Joachim Böttcher / Harald Schubert / Thomas G. Lesser / Scott Almquist / Francisco Camarena / Sergio Jiménez-Gambín / Noé Jiménez / Jin Woo Chang / Vandiver Chaplin / Rebekah Griesenauer / Michael Miga / Nicholas Ellens / Raag Airan / Alfredo Quinones-Hinojosa / Keyvan Farahani / Xue Feng / Samuel Fielden / Li Zhao / Max Wintermark / Craig Meyer / Sijia Guo / Xin Lu / Jiachen Zhuo / Su Xu / Rao Gullapalli / Dheeraj Gandhi / Omer Brokman / Hongchae Baek / Hyungmin Kim / Steven Leung / Taylor Webb / Natalia Vykhodtseva / Thai-Son Nguyen / Chang Kyu Park / Sang Man Park / Na Young Jung / Min Soo Kim / Won Seok Chang / Hyun Ho Jung / Michael Plaksin / Yoni Weissler / Shy Shoham / Eitan Kimmel / Pavel B. Rosnitskiy / Steve Krupa / Eilon Hazan / Omer Naor / Yoav Levy / Noam Maimon / Inbar Brosh / Itamar Kahn / Jessica Cahill / Elodie Constanciel Colas / Adrian Wydra / Roman Maev / Amirah Aly / Ozge Sesenoglu-Laird / Linas Padegimas / Mark Cooper / Barbara Waszczak / Seruz Tehrani / Craig Slingluff / James Larner / Kumari Andarawewa / Eugene Ozhinsky / Rutwik Shah / Roland Krug / Roel Deckers / Sabine Linn / Britt Suelmann / Arjen Witkamp / Paul Vaessen / Paul van Diest / Lambertus W. Bartels / Clemens Bos / Nicolas Borys / Gert Storm / Elsken Van der Wall / Navid Farr / Moez Alnazeer / Prateek Katti / Bradford Wood / Alexis Farrer / Cyril Ferrer / Baudouin Denis de Senneville / Marijn van Stralen / Jingfei Liu / J. Kent Leach / Stephan Zidowitz / Hsin-Lun Lee / Fang-Chi Hsu / Chia-Chun Kuo / Shiu-Chen Jeng / Tung-Ho Chen / Nai-Yi Yang / Jeng-Fong Chiou / Yi-tzu Kao / Chia-Hsin Pan / Jing-Fu Wu / Yi-Chieh Tsai / Sara Johnson / Dawei Li / Ye He / Ioannis Karakitsios / Michael Schwenke / Daniel Demedts / Xu Xiao / Ian Cavin / Emilee Minalga / Robb Merrill / Rock Hadley / Pascal Ramaekers / Martijn de Greef / Kian Shahriari / Mohammad Hossein Parvizi / Kiana Asadnia / Marzieh Chamanara / Seyed Kamran Kamrava / Hamid Reza Chabok / Ruben Stein / Sébastien Muller / Jeremy Tan / Cornel Zachiu / Hans-Peter Erasmus / Glen Van Arsdell / Lee Benson / Kee W. Jang / Mary Angstadt / Bobbi Lewis / Hailey McLean / Martijn Hoogenboom / Dylan Eikelenboom / Martijn den Brok / Pieter Wesseling / Arend Heerschap / Jurgen Fütterer / Gosse Adema / Kevin Wang / Pei Zhong / Joyce Joy / Helen McLeod / Harry Kim / Matthew Lewis / Arda Ozilgen / Peter Zahos / Dezba Coughlin / Xinyan Tang / Jeff Lotz / Kathleen Jedruszczuk / Amitabh Gulati / Stephen Solomon / Elena Kaye / John Mugler / Gaetano Barbato / Gian Luca Scoarughi / Cristiano Corso / Alessandro Gorgone / Ilaria Giuseppina Migliore / Zachary Larrabee / Arik Hananel / Jean-Francois Aubry / Ayele Negussie / Emmanuel Wilson / Reza Seifabadi / Hyungwon Moon / Jeeun Kang / Changbeom Sim / Jin Ho Chang / Hyuncheol Kim / Hak Jong Lee / Noboru Sasaki / Mitsuyoshi Takiguchi / Lukas Sebeke / Xi Luo / Bram de Jager / Maurice Heemels / Christopher Abraham / Laura Curiel / Rémi Berriet / Margit Janát-Amsbury / Joseph Corea / Patrick Peiyong Ye / Ana Clauda Arias / Micheal Lustig / Bryant Svedin

    Journal of Therapeutic Ultrasound, Vol 4, Iss S1, Pp 1-

    2016  Volume 113

    Keywords Medical physics. Medical radiology. Nuclear medicine ; R895-920
    Language English
    Publishing date 2016-11-01T00:00:00Z
    Publisher BioMed Central
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top