LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 8 of total 8

Search options

  1. Article ; Online: RINT1 deficiency disrupts lipid metabolism and underlies a complex hereditary spastic paraplegia

    Nathalie Launay / Montserrat Ruiz / Laura Planas-Serra / Edgard Verdura / Agustí Rodríguez-Palmero / Agatha Schlüter / Leire Goicoechea / Cristina Guilera / Josefina Casas / Felix Campelo / Emmanuelle Jouanguy / Jean-Laurent Casanova / Odile Boespflug-Tanguy / Maria Vazquez Cancela / Luis González Gutiérrez-Solana / Carlos Casasnovas / Estela Area-Gomez / Aurora Pujol

    The Journal of Clinical Investigation, Vol 133, Iss

    2023  Volume 14

    Abstract: The Rad50 interacting protein 1 (Rint1) is a key player in vesicular trafficking between the ER and Golgi apparatus. Biallelic variants in RINT1 cause infantile-onset episodic acute liver failure (ALF). Here, we describe 3 individuals from 2 unrelated ... ...

    Abstract The Rad50 interacting protein 1 (Rint1) is a key player in vesicular trafficking between the ER and Golgi apparatus. Biallelic variants in RINT1 cause infantile-onset episodic acute liver failure (ALF). Here, we describe 3 individuals from 2 unrelated families with novel biallelic RINT1 loss-of-function variants who presented with early onset spastic paraplegia, ataxia, optic nerve hypoplasia, and dysmorphic features, broadening the previously described phenotype. Our functional and lipidomic analyses provided evidence that pathogenic RINT1 variants induce defective lipid–droplet biogenesis and profound lipid abnormalities in fibroblasts and plasma that impact both neutral lipid and phospholipid metabolism, including decreased triglycerides and diglycerides, phosphatidylcholine/phosphatidylserine ratios, and inhibited Lands cycle. Further, RINT1 mutations induced intracellular ROS production and reduced ATP synthesis, affecting mitochondria with membrane depolarization, aberrant cristae ultrastructure, and increased fission. Altogether, our results highlighted the pivotal role of RINT1 in lipid metabolism and mitochondria function, with a profound effect in central nervous system development.
    Keywords Metabolism ; Neuroscience ; Medicine ; R
    Subject code 572 ; 570
    Language English
    Publishing date 2023-07-01T00:00:00Z
    Publisher American Society for Clinical Investigation
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: A novel homozygous mutation in TRAPPC9 gene causing autosomal recessive non-syndromic intellectual disability

    Mutaz Amin / Cedric Vignal / Esraa Eltaraifee / Inaam N. Mohammed / Ahlam A. A. Hamed / Maha A. Elseed / Arwa Babai / Iman Elbadi / Doua Mustafa / Rayan Abubaker / Mohamed Mustafa / Severine Drunat / Liena E. O. Elsayed / Ammar E. Ahmed / Odile Boespflug-Tanguy / Imen Dorboz

    BMC Medical Genomics, Vol 15, Iss 1, Pp 1-

    2022  Volume 5

    Abstract: Abstract Background The etiology of intellectual disabilities is diverse and includes both genetic and environmental factors. The genetic causes of intellectual disabilities range from chromosomal aberrations to single gene disorders. The TRAPPC9 gene ... ...

    Abstract Abstract Background The etiology of intellectual disabilities is diverse and includes both genetic and environmental factors. The genetic causes of intellectual disabilities range from chromosomal aberrations to single gene disorders. The TRAPPC9 gene has been reported to cause autosomal recessive forms of intellectual disabilities in 56 patients from consanguineous and non-consanguineous families around the world. Methods We analyzed two siblings with intellectual disability, microcephaly and delayed motor and speech development from a consanguineous Sudanese family. Genomic DNA was screened for mutations using NGS panel (NextSeq500 Illumina) testing 173 microcephaly associated genes in the Molecular Genetics service in Robert Debre hospital in Paris, France. Results A novel homozygous mutation (NM_031466.7 (TRAPPC9):c.2288dup, p. (Val764Glyfs*7) in exon 14 of TRAPPC9 gene was found in the two patients. The mutation was predicted to cause nonsense mediated decay (NSMD) using SIFT prediction tool. The variant has not been found in either gnomAD or Exac databases. Both parents were heterozygous (carriers) to the mutation. Conclusion This is the first study to report patients with TRAPPC9-related disorder from Sub-Saharan Africa.
    Keywords Autosomal recessive ; Intellectual disability ; TRAPPC9 ; Novel ; Sudan ; Internal medicine ; RC31-1245 ; Genetics ; QH426-470
    Language English
    Publishing date 2022-11-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Deleterious mutations in ALDH1L2 suggest a novel cause for neuro-ichthyotic syndrome

    Catherine Sarret / Zahra Ashkavand / Evan Paules / Imen Dorboz / Peter Pediaditakis / Susan Sumner / Eléonore Eymard-Pierre / Christine Francannet / Natalia I. Krupenko / Odile Boespflug-Tanguy / Sergey A. Krupenko

    npj Genomic Medicine, Vol 4, Iss 1, Pp 1-

    2019  Volume 9

    Abstract: Abstract Neuro-ichthyotic syndromes are a group of rare genetic diseases mainly associated with perturbations in lipid metabolism, intracellular vesicle trafficking, or glycoprotein synthesis. Here, we report a patient with a neuro-ichthyotic syndrome ... ...

    Abstract Abstract Neuro-ichthyotic syndromes are a group of rare genetic diseases mainly associated with perturbations in lipid metabolism, intracellular vesicle trafficking, or glycoprotein synthesis. Here, we report a patient with a neuro-ichthyotic syndrome associated with deleterious mutations in the ALDH1L2 (aldehyde dehydrogenase 1 family member L2) gene encoding for mitochondrial 10-formyltetrahydrofolate dehydrogenase. Using fibroblast culture established from the ALDH1L2-deficient patient, we demonstrated that the enzyme loss impaired mitochondrial function affecting both mitochondrial morphology and the pool of metabolites relevant to β-oxidation of fatty acids. Cells lacking the enzyme had distorted mitochondria, accumulated acylcarnitine derivatives and Krebs cycle intermediates, and had lower ATP and increased ADP/AMP indicative of a low energy index. Re-expression of functional ALDH1L2 enzyme in deficient cells restored the mitochondrial morphology and the metabolic profile of fibroblasts from healthy individuals. Our study underscores the role of ALDH1L2 in the maintenance of mitochondrial integrity and energy balance of the cell, and suggests the loss of the enzyme as the cause of neuro-cutaneous disease.
    Keywords Medicine ; R ; Genetics ; QH426-470
    Subject code 570
    Language English
    Publishing date 2019-07-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: KARS-related diseases

    Anna Ardissone / Davide Tonduti / Andrea Legati / Eleonora Lamantea / Rita Barone / Imen Dorboz / Odile Boespflug-Tanguy / Gabriella Nebbia / Marco Maggioni / Barbara Garavaglia / Isabella Moroni / Laura Farina / Anna Pichiecchio / Simona Orcesi / Luisa Chiapparini / Daniele Ghezzi

    Orphanet Journal of Rare Diseases, Vol 13, Iss 1, Pp 1-

    progressive leukoencephalopathy with brainstem and spinal cord calcifications as new phenotype and a review of literature

    2018  Volume 10

    Abstract: Abstract Background KARS encodes lysyl- transfer ribonucleic acid (tRNA) synthetase, which catalyzes the aminoacylation of tRNA-Lys in the cytoplasm and mitochondria. Eleven families/sporadic patients and 16 different mutations in KARS have been reported ...

    Abstract Abstract Background KARS encodes lysyl- transfer ribonucleic acid (tRNA) synthetase, which catalyzes the aminoacylation of tRNA-Lys in the cytoplasm and mitochondria. Eleven families/sporadic patients and 16 different mutations in KARS have been reported to date. The associated clinical phenotype is heterogeneous ranging from early onset encephalopathy to isolated peripheral neuropathy or nonsyndromic hearing impairment. Recently additional presentations including leukoencephalopathy as predominant cerebral involvement or cardiomyopathy, isolated or associated with muscular and cerebral involvement, have been reported. A progressive Leukoencephalopathy with brainstem and spinal cord calcifications was previously described in a singleton patient and in two siblings, without the identification of the genetic cause. We reported here about a new severe phenotype associated with biallelic KARS mutations and sharing some common points with the other already reported phenotypes, but with a distinct clinical and neuroimaging picture. Review of KARS mutant patients published to date will be also discussed. Results Herein, we report the clinical, biochemical and molecular findings of 2 unreported Italian patients affected by developmental delay, acquired microcephaly, spastic tetraparesis, epilepsy, sensory-neural hypoacusia, visual impairment, microcytic hypochromic anaemia and signs of hepatic dysfunction. MRI pattern in our patients was characterized by progressive diffuse leukoencephalopathy and calcifications extending in cerebral, brainstem and cerebellar white matter, with spinal cord involvement. Genetic analysis performed on these 2 patients and in one subject previously described with similar MRI pattern revealed the presence of biallelic mutations in KARS in all 3 subjects. Conclusions With our report we define the molecular basis of the previously described Leukoencephalopathy with Brainstem and Spinal cord Calcification widening the spectrum of KARS related disorders, particularly in childhood onset disease ...
    Keywords Mitochondrial disease ; KARS ; Leukoencephalopathy ; Calcifications ; Medicine ; R
    Subject code 610
    Language English
    Publishing date 2018-04-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: CSF N-glycan profiles to investigate biomarkers in brain developmental disorders

    Anne Fogli / Christine Merle / Véronique Roussel / Raphael Schiffmann / Sylvie Ughetto / Manfred Theisen / Odile Boespflug-Tanguy

    PLoS ONE, Vol 7, Iss 8, p e

    application to leukodystrophies related to eIF2B mutations.

    2012  Volume 42688

    Abstract: BACKGROUND: Primary or secondary abnormalities of glycosylation have been reported in various brain diseases. Decreased asialotransferrin to sialotransferrin ratio in cerebrospinal fluid (CSF) is a diagnostic marker of leukodystrophies related to ... ...

    Abstract BACKGROUND: Primary or secondary abnormalities of glycosylation have been reported in various brain diseases. Decreased asialotransferrin to sialotransferrin ratio in cerebrospinal fluid (CSF) is a diagnostic marker of leukodystrophies related to mutations of genes encoding translation initiation factor, EIF2B. We investigated the CSF glycome of eIF2B-mutated patients and age-matched normal individuals in order to further characterize the glycosylation defect for possible use as a biomarker. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a differential N-glycan analysis using MALDI-TOF/MS of permethylated N-glycans in CSF and plasma of controls and eIF2B-mutated patients. We found in control CSF that tri-antennary/bisecting and high mannose structures were highly represented in samples obtained between 1 to 5 years of age, whereas fucosylated, sialylated structures were predominant at later age. In CSF, but not in plasma, of eIF2B-mutated patient samples, we found increased relative intensity of bi-antennary structures and decreased tri-antennary/bisecting structures in N-glycan profiles. Four of these structures appeared to be biomarker candidates of glycomic profiles of eIF2B-related disorders. CONCLUSION: Our results suggest a dynamic development of normal CSF N-glycan profiles from high mannose type structures to complex sialylated structures that could be correlated with postnatal brain maturation. CSF N-glycome analysis shows relevant quantitative changes associated with eIF2B related disorders. This approach could be applied to other neurological disorders involving developmental gliogenesis/synaptogenesis abnormalities.
    Keywords Medicine ; R ; Science ; Q
    Subject code 616
    Language English
    Publishing date 2012-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Should metabolic diseases be systematically screened in nonsyndromic autism spectrum disorders?

    Manuel Schiff / Jean-François Benoist / Sofiane Aïssaoui / Odile Boespflug-Tanguy / Marie-Christine Mouren / Hélène Ogier de Baulny / Richard Delorme

    PLoS ONE, Vol 6, Iss 7, p e

    2011  Volume 21932

    Abstract: Background In the investigation of autism spectrum disorders (ASD), a genetic cause is found in approximately 10-20%. Among these cases, the prevalence of the rare inherited metabolic disorders (IMD) is unknown and poorly evaluated. An IMD responsible ... ...

    Abstract Background In the investigation of autism spectrum disorders (ASD), a genetic cause is found in approximately 10-20%. Among these cases, the prevalence of the rare inherited metabolic disorders (IMD) is unknown and poorly evaluated. An IMD responsible for ASD is usually identified by the associated clinical phenotype such as dysmorphic features, ataxia, microcephaly, epilepsy, and severe intellectual disability (ID). In rare cases, however, ASD may be considered as nonsyndromic at the onset of a related IMD. Objectives To evaluate the utility of routine metabolic investigations in nonsyndromic ASD. Patients and methods We retrospectively analyzed the results of a metabolic workup (urinary mucopolysaccharides, urinary purines and pyrimidines, urinary creatine and guanidinoacetate, urinary organic acids, plasma and urinary amino acids) routinely performed in 274 nonsyndromic ASD children. Results The metabolic parameters were in the normal range for all but 2 patients: one with unspecific creatine urinary excretion and the other with persistent 3-methylglutaconic aciduria. Conclusions These data provide the largest ever reported cohort of ASD patients for whom a systematic metabolic workup has been performed; they suggest that such a routine metabolic screening does not contribute to the causative diagnosis of nonsyndromic ASD. They also emphasize that the prevalence of screened IMD in nonsyndromic ASD is probably not higher than in the general population (<0.5%). A careful clinical evaluation is probably more reasonable and of better medical practice than a costly systematic workup.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2011-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Eukaryotic initiation factor 2B (eIF2B) GEF activity as a diagnostic tool for EIF2B-related disorders.

    Laetitia Horzinski / Aurélia Huyghe / Marie-Céleste Cardoso / Céline Gonthier / Lemlih Ouchchane / Raphael Schiffmann / Pierre Blanc / Odile Boespflug-Tanguy / Anne Fogli

    PLoS ONE, Vol 4, Iss 12, p e

    2009  Volume 8318

    Abstract: BACKGROUND:In recent years, the phenotypes of leukodystrophies linked to mutations in the eukaryotic initiation factor 2B genes have been extended, classically called CACH/VWM (Childhood ataxia with cntral hypomyélination/vanishing white matter disorder). ...

    Abstract BACKGROUND:In recent years, the phenotypes of leukodystrophies linked to mutations in the eukaryotic initiation factor 2B genes have been extended, classically called CACH/VWM (Childhood ataxia with cntral hypomyélination/vanishing white matter disorder). The large clinical spectrum observed from the more severe antenatal forms responsible for fetal death to milder adult forms with an onset after 16 years old and restricted to slow cognitive impairment have lead to the concept of eIF2B-related disorders. The typical MRI pattern with a diffuse CSF-like aspect of the cerebral white matter can lack particularly in the adult forms whereas an increasing number of patients with clinical and MRI criteria for CACH/VWM disease but without eIF2B mutations are found. Then we propose the use of biochemical markers to help in this difficult diagnosis. The biochemical diagnosis of eIF2B-related disorder is difficult as no marker, except the recently described asialotransferrin/transferrin ratio measured in cerebrospinal fluid, has been proposed and validated until now. Decreased eIF2B GEF activity has been previously reported in lymphoblastoid cell lines from 30 eIF2B-mutated patients. Our objective was to evaluate further the utility of this marker and to validate eIF2B GEF activity in a larger cohort as a specific diagnostic test for eIF2B-related disorders. METHODOLOGY/PRINCIPAL FINDINGS:We performed eIF2B GEF activity assays in cells from 63 patients presenting with different clinical forms and eIF2B mutations in comparison to controls but also to patients with defined leukodystrophies or CACH/VWM-like diseases without eIF2B mutations. We found a significant decrease of GEF activity in cells from eIF2B-mutated patients with 100% specificity and 89% sensitivity when the activity threshold was set at < or =77.5%. CONCLUSION:These results validate the measurement of eIF2B GEF activity in patients' transformed-lymphocytes as an important tool for the diagnosis of eIF2B-related disorders.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2009-12-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Developmental splicing deregulation in leukodystrophies related to EIF2B mutations.

    Aurélia Huyghe / Laetitia Horzinski / Alain Hénaut / Marina Gaillard / Enrico Bertini / Raphael Schiffmann / Diana Rodriguez / Yann Dantal / Odile Boespflug-Tanguy / Anne Fogli

    PLoS ONE, Vol 7, Iss 6, p e

    2012  Volume 38264

    Abstract: Leukodystrophies (LD) are rare inherited disorders that primarily affect the white matter (WM) of the central nervous system. The large heterogeneity of LD results from the diversity of the genetically determined defects that interfere with glial cells ... ...

    Abstract Leukodystrophies (LD) are rare inherited disorders that primarily affect the white matter (WM) of the central nervous system. The large heterogeneity of LD results from the diversity of the genetically determined defects that interfere with glial cells functions. Astrocytes have been identified as the primary target of LD with cystic myelin breakdown including those related to mutations in the ubiquitous translation initiation factor eIF2B. EIF2B is involved in global protein synthesis and its regulation under normal and stress conditions. Little is known about how eIF2B mutations have a major effect on WM. We performed a transcriptomic analysis using fibroblasts of 10 eIF2B-mutated patients with a severe phenotype and 10 age matched patients with other types of LD in comparison to control fibroblasts. ANOVA was used to identify genes that were statistically significantly differentially expressed at basal state and after ER-stress. The pattern of differentially expressed genes between basal state and ER-stress did not differ significantly among each of the three conditions. However, 70 genes were specifically differentially expressed in eIF2B-mutated fibroblasts whatever the stress conditions tested compared to controls, 96% being under-expressed. Most of these genes were involved in mRNA regulation and mitochondrial metabolism. The 13 most representative genes, including genes belonging to the Heterogeneous Nuclear Ribonucleoprotein (HNRNP) family, described as regulators of splicing events and stability of mRNA, were dysregulated during the development of eIF2B-mutated brains. HNRNPH1, F and C mRNA were over-expressed in foetus but under-expressed in children and adult brains. The abnormal regulation of HNRNP expression in the brain of eIF2B-mutated patients was concomitant with splicing dysregulation of the main genes involved in glial maturation such as PLP1 for oligodendrocytes and GFAP in astrocytes. These findings demonstrate a developmental deregulation of splicing events in glial cells that is related ...
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2012-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top