LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 13

Search options

  1. Article ; Online: Changes in dynamics of tumor/endothelial cell adhesive interactions depending on endothelial cell growth state and elastic properties

    Leike Xie / Zhe Sun / Nicola J. Brown / Olga V. Glinskii / Gerald A. Meininger / Vladislav V. Glinsky

    PLoS ONE, Vol 17, Iss

    2022  Volume 6

    Abstract: Cancer cell adhesion to the endothelium is a crucial process in hematogenous metastasis, but how the integrity of the endothelial barrier and endothelial cell (EC) mechanical properties influence the adhesion between metastatic cancer cells and the ... ...

    Abstract Cancer cell adhesion to the endothelium is a crucial process in hematogenous metastasis, but how the integrity of the endothelial barrier and endothelial cell (EC) mechanical properties influence the adhesion between metastatic cancer cells and the endothelium remain unclear. In the present study, we have measured the adhesion between single cancer cells and two types of ECs at various growth states and their mechanical properties (elasticity) using atomic force microscopy single cell force spectroscopy. We demonstrated that the EC stiffness increased and adhesion with cancer cells decreased, as ECs grew from a single cell to a confluent state and developed cell-cell contacts, but this was reversed when confluent cells returned to a single state in a scratch assay. Our results suggest that the integrity of the endothelial barrier is an important factor in reducing the ability of the metastatic tumor cells to adhere to the vascular endothelium, extravasate and lodge in the vasculature of a distant organ where secondary metastatic tumors would develop.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Changes in dynamics of tumor/endothelial cell adhesive interactions depending on endothelial cell growth state and elastic properties.

    Leike Xie / Zhe Sun / Nicola J Brown / Olga V Glinskii / Gerald A Meininger / Vladislav V Glinsky

    PLoS ONE, Vol 17, Iss 6, p e

    2022  Volume 0269552

    Abstract: Cancer cell adhesion to the endothelium is a crucial process in hematogenous metastasis, but how the integrity of the endothelial barrier and endothelial cell (EC) mechanical properties influence the adhesion between metastatic cancer cells and the ... ...

    Abstract Cancer cell adhesion to the endothelium is a crucial process in hematogenous metastasis, but how the integrity of the endothelial barrier and endothelial cell (EC) mechanical properties influence the adhesion between metastatic cancer cells and the endothelium remain unclear. In the present study, we have measured the adhesion between single cancer cells and two types of ECs at various growth states and their mechanical properties (elasticity) using atomic force microscopy single cell force spectroscopy. We demonstrated that the EC stiffness increased and adhesion with cancer cells decreased, as ECs grew from a single cell to a confluent state and developed cell-cell contacts, but this was reversed when confluent cells returned to a single state in a scratch assay. Our results suggest that the integrity of the endothelial barrier is an important factor in reducing the ability of the metastatic tumor cells to adhere to the vascular endothelium, extravasate and lodge in the vasculature of a distant organ where secondary metastatic tumors would develop.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Corneal injury is associated with stromal and vascular alterations within cranial dura mater

    Olga V. Glinskii / Vladislav V. Glinsky / Leike Xie / Filiz Bunyak / Vladimir V. Glinskii / Sunilima Sinha / Suneel Gupta / Renato V. Iozzo / Rajiv R. Mohan

    PLoS ONE, Vol 18, Iss

    2023  Volume 4

    Abstract: The cornea and cranial dura mater share sensory innervation. This link raises the possibility that pathological impulses mediated by corneal injury may be transmitted to the cranial dura, trigger dural perivascular/connective tissue nociceptor responses, ...

    Abstract The cornea and cranial dura mater share sensory innervation. This link raises the possibility that pathological impulses mediated by corneal injury may be transmitted to the cranial dura, trigger dural perivascular/connective tissue nociceptor responses, and induce vascular and stromal alterations affecting dura mater blood and lymphatic vessel functionality. In this study, using a mouse model, we demonstrate for the first time that two weeks after the initial insult, alkaline injury to the cornea leads to remote pathological changes within the coronal suture area of the dura mater. Specifically, we detected significant pro-fibrotic changes in the dural stroma, as well as vascular remodeling characterized by alterations in vascular smooth muscle cell (VSMC) morphology, reduced blood vessel VSMC coverage, endothelial cell expression of the fibroblast specific protein 1, and significant increase in the number of podoplanin-positive lymphatic sprouts. Intriguingly, the deficiency of a major extracellular matrix component, small leucine-rich proteoglycan decorin, modifies both the direction and the extent of these changes. As the dura mater is the most important route for the brain metabolic clearance, these results are of clinical relevance and provide a much-needed link explaining the association between ophthalmic conditions and the development of neurodegenerative diseases.
    Keywords Medicine ; R ; Science ; Q
    Subject code 616
    Language English
    Publishing date 2023-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Corneal injury is associated with stromal and vascular alterations within cranial dura mater.

    Olga V Glinskii / Vladislav V Glinsky / Leike Xie / Filiz Bunyak / Vladimir V Glinskii / Sunilima Sinha / Suneel Gupta / Renato V Iozzo / Rajiv R Mohan

    PLoS ONE, Vol 18, Iss 4, p e

    2023  Volume 0284082

    Abstract: The cornea and cranial dura mater share sensory innervation. This link raises the possibility that pathological impulses mediated by corneal injury may be transmitted to the cranial dura, trigger dural perivascular/connective tissue nociceptor responses, ...

    Abstract The cornea and cranial dura mater share sensory innervation. This link raises the possibility that pathological impulses mediated by corneal injury may be transmitted to the cranial dura, trigger dural perivascular/connective tissue nociceptor responses, and induce vascular and stromal alterations affecting dura mater blood and lymphatic vessel functionality. In this study, using a mouse model, we demonstrate for the first time that two weeks after the initial insult, alkaline injury to the cornea leads to remote pathological changes within the coronal suture area of the dura mater. Specifically, we detected significant pro-fibrotic changes in the dural stroma, as well as vascular remodeling characterized by alterations in vascular smooth muscle cell (VSMC) morphology, reduced blood vessel VSMC coverage, endothelial cell expression of the fibroblast specific protein 1, and significant increase in the number of podoplanin-positive lymphatic sprouts. Intriguingly, the deficiency of a major extracellular matrix component, small leucine-rich proteoglycan decorin, modifies both the direction and the extent of these changes. As the dura mater is the most important route for the brain metabolic clearance, these results are of clinical relevance and provide a much-needed link explaining the association between ophthalmic conditions and the development of neurodegenerative diseases.
    Keywords Medicine ; R ; Science ; Q
    Subject code 616
    Language English
    Publishing date 2023-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Temporal and molecular dynamics of human metastatic breast carcinoma cell adhesive interactions with human bone marrow endothelium analyzed by single-cell force spectroscopy.

    Leike Xie / Zhe Sun / Zhongkui Hong / Nicola J Brown / Olga V Glinskii / Kate Rittenhouse-Olson / Gerald A Meininger / Vladislav V Glinsky

    PLoS ONE, Vol 13, Iss 9, p e

    2018  Volume 0204418

    Abstract: Bone is a common site of metastasis for breast cancer and the mechanisms of metastasis are not fully elucidated. The purpose of our study was to characterize temporal and molecular dynamics of adhesive interactions between human breast cancer cells (HBCC) ...

    Abstract Bone is a common site of metastasis for breast cancer and the mechanisms of metastasis are not fully elucidated. The purpose of our study was to characterize temporal and molecular dynamics of adhesive interactions between human breast cancer cells (HBCC) and human bone marrow endothelium (HBME) with piconewton resolution using atomic force microscopy (AFM). In adhesion experiments, a single breast cancer cell, MDA-MB-231 (MB231) or MDA-MB-435 (MB435) was attached to the AFM cantilever and brought into contact with a confluent HBME monolayer for different time periods (0.5 to 300 sec). The forces required to rupture individual molecular interactions and completely separate interacting cells were analyzed as measures of cell-cell adhesion. Adhesive interactions between HBME and either MB231 or MB435 cells increased progressively as cell-cell contact time was prolonged from 0.5 to 300 sec due to the time-dependent increase in the number and frequency of individual adhesive events, as well as to the involvement of stronger ligand-receptor interactions over time. Studies of the individual molecule involvement revealed that Thomsen-Friedenreich antigen (TF-Ag), galectin-3, integrin-β1, and integrin-α3 are all contributing to HBCC/HBME adhesion to various degrees in a temporally defined fashion. In conclusion, cell-cell contact time enhances adhesion of HBCC to HBME and the adhesion is mediated, in part, by TF-Ag, galectin-3, integrin-α3, and integrin-β1.
    Keywords Medicine ; R ; Science ; Q
    Subject code 616
    Language English
    Publishing date 2018-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Pulsed estrogen therapy prevents post-OVX porcine dura mater microvascular network weakening via a PDGF-BB-dependent mechanism.

    Olga V Glinskii / Virginia H Huxley / Vladimir V Glinskii / Leona J Rubin / Vladislav V Glinsky

    PLoS ONE, Vol 8, Iss 12, p e

    2013  Volume 82900

    Abstract: In postmenopausal women, estrogen (E2) deficiencies are frequently associated with higher risk of intracranial hemorrhage, increased incidence of stroke, cerebral aneurysm, and decline in cognitive abilities. In younger postpartum women and those using ... ...

    Abstract In postmenopausal women, estrogen (E2) deficiencies are frequently associated with higher risk of intracranial hemorrhage, increased incidence of stroke, cerebral aneurysm, and decline in cognitive abilities. In younger postpartum women and those using oral contraceptives, perturbations in E2 are associated with higher risk of cerebral venous thrombosis. A number of serious intracranial pathologic conditions linked to E2 deficiencies, such as dural sinus thrombosis, dural fistulae, non-parenchymal intracranial hemorrhages, migraines, and spontaneous cerebrospinal fluid leaks, involve the vessels not of the brain itself, but of the outer fibrous membrane of the brain, the dura mater (DM). The pathogenesis of these disorders remains mysterious and how estrogen regulates structural and functional integrity of DM vasculature is largely unknown. Here, we demonstrate that post ovariectomy (OVX) DM vascular remodeling is manifested by microvessel destabilization, capillary rarefaction, increased vascular permeability, and aberrant angio-architecture, and is the result of disrupted E2-regulated PDGF-BB signaling within dura microvasculature. These changes, associated with the reduction in systemic PDGF-BB levels, are not corrected by a flat-dose E2 hormone replacement therapy (HRT), but are largely prevented using HRT schedules mimicking physiological E2 fluctuations. We demonstrate that 1) E2 regulates PDGF-BB production by endothelial cells in a dose-dependent manner and 2) optimization of PDGF-BB levels and induction of robust PDGF-mediated endothelial cell-vascular pericyte interactions require high (estrous) E2 concentrations. We conclude that high (estrous) levels of E2 are important in controlling PDGF-mediated crosstalk between endothelial cells and pericytes, a fundamental mechanism governing microvessel stability and essential for preserving intracranial homeostasis.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Identification and analysis of signaling networks potentially involved in breast carcinoma metastasis to the brain.

    Feng Li / Olga V Glinskii / Jianjun Zhou / Landon S Wilson / Stephen Barnes / Douglas C Anthony / Vladislav V Glinsky

    PLoS ONE, Vol 6, Iss 7, p e

    2011  Volume 21977

    Abstract: Brain is a common site of breast cancer metastasis associated with significant neurologic morbidity, decreased quality of life, and greatly shortened survival. However, the molecular and cellular mechanisms underpinning brain colonization by breast ... ...

    Abstract Brain is a common site of breast cancer metastasis associated with significant neurologic morbidity, decreased quality of life, and greatly shortened survival. However, the molecular and cellular mechanisms underpinning brain colonization by breast carcinoma cells are poorly understood. Here, we used 2D-DIGE (Difference in Gel Electrophoresis) proteomic analysis followed by LC-tandem mass spectrometry to identify the proteins differentially expressed in brain-targeting breast carcinoma cells (MB231-Br) compared with parental MDA-MB-231 cell line. Between the two cell lines, we identified 12 proteins consistently exhibiting greater than 2-fold (p<0.05) difference in expression, which were associated by the Ingenuity Pathway Analysis (IPA) with two major signaling networks involving TNFα/TGFβ-, NFκB-, HSP-70-, TP53-, and IFNγ-associated pathways. Remarkably, highly related networks were revealed by the IPA analysis of a list of 19 brain-metastasis-associated proteins identified recently by the group of Dr. A. Sierra using MDA-MB-435-based experimental system (Martin et al., J Proteome Res 2008 7:908-20), or a 17-gene classifier associated with breast cancer brain relapse reported by the group of Dr. J. Massague based on a microarray analysis of clinically annotated breast tumors from 368 patients (Bos et al., Nature 2009 459: 1005-9). These findings, showing that different experimental systems and approaches (2D-DIGE proteomics used on brain targeting cell lines or gene expression analysis of patient samples with documented brain relapse) yield highly related signaling networks, suggest strongly that these signaling networks could be essential for a successful colonization of the brain by metastatic breast carcinoma cells.
    Keywords Medicine ; R ; Science ; Q
    Subject code 616
    Language English
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Inhibition of Prostate Cancer Bone Metastasis by Synthetic TF Antigen Mimic/Galectin-3 Inhibitor Lactulose-l-Leucine

    Olga V. Glinskii / Sudha Sud / Valeri V. Mossine / Thomas P. Mawhinney / Douglas C. Anthony / Gennadi V. Glinsky / Kenneth J. Pienta / Vladislav V. Glinsky

    Neoplasia : An International Journal for Oncology Research, Vol 14, Iss 1, Pp 65-

    2012  Volume 73

    Abstract: Currently incurable, prostate cancer metastasis has a remarkable ability to spread to the skeleton. Previous studies demonstrated that interactions mediated by the cancer-associated Thomsen-Friedenreich glycoantigen (TF-Ag) and the carbohydrate-binding ... ...

    Abstract Currently incurable, prostate cancer metastasis has a remarkable ability to spread to the skeleton. Previous studies demonstrated that interactions mediated by the cancer-associated Thomsen-Friedenreich glycoantigen (TF-Ag) and the carbohydrate-binding protein galectin-3 play an important role in several rate-limiting steps of cancer metastasis such as metastatic cell adhesion to bone marrow endothelium, homotypic tumor cell aggregation, and clonogenic survival and growth. This study investigated the ability of a synthetic small-molecular-weight nontoxic carbohydrate-based TF-Ag mimic lactulose-l-leucine (Lac-l-Leu) to inhibit these processes in vitro and, ultimately, prostate cancer bone metastasis in vivo. Using an in vivo mouse model, based on intracardiac injection of human PC-3 prostate carcinoma cells stably expressing luciferase, we investigated the ability of Lac-l-Leu to impede the establishment and growth of bone metastasis. Parallel-flow chamber assay, homotypic aggregation assay, modified Boyden chamber assay, and clonogenic growth assay were used to assess the effects of Lac-l-Leu on tumor cell adhesion to the endothelium, homotypic tumor cell aggregation, transendothelial migration, and clonogenic survival and growth, respectively. We report that daily intraperitoneal administration of Lac-l-Leu resulted in a three-fold (P < .05) decrease in metastatic tumor burden compared with the untreated control. Mechanistically, the effect of Lac-l-Leu, which binds and inhibits galectins by mimicking essential structural features of the TF-Ag, was associated with a dose-dependent inhibition of prostate cancer cell adhesion to bone marrow endothelium, homotypic aggregation, transendothelial migration, and clonogenic growth. We conclude that small-molecular-weight carbohydrate-based compounds targeting β-galactoside-mediated interactions could provide valuable means for controlling and preventing metastatic prostate cancer spread to the skeleton.
    Keywords Medicine ; R ; Internal medicine ; RC31-1245 ; Neoplasms. Tumors. Oncology. Including cancer and carcinogens ; RC254-282
    Subject code 570
    Publishing date 2012-01-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Mechanical Entrapment Is Insufficient and Intercellular Adhesion Is Essential for Metastatic Cell Arrest in Distant Organs

    Olga V. Glinskii / Virginia H. Huxley / Gennadi V. Glinsky / Kenneth J. Pienta / Avraham Raz / Vladislav V. Glinsky

    Neoplasia : An International Journal for Oncology Research, Vol 7, Iss 5, Pp 522-

    2005  Volume 527

    Abstract: In this report, we challenge a common perception that tumor embolism is a size-limited event of mechanical arrest, occurring in the first capillary bed encountered by blood-borne metastatic cells. We tested the hypothesis that mechanical entrapment alone, ...

    Abstract In this report, we challenge a common perception that tumor embolism is a size-limited event of mechanical arrest, occurring in the first capillary bed encountered by blood-borne metastatic cells. We tested the hypothesis that mechanical entrapment alone, in the absence of tumor cell adhesion to blood vessel walls, is not sufficient for metastatic cell arrest in target organ microvasculature. The in vivo metastatic deposit formation assay was used to assess the number and location of fluorescently labeled tumor cells lodged in selected organs and tissues following intravenous inoculation. We report that a significant fraction of breast and prostate cancer cells escapes arrest in a lung capillary bed and lodges successfully in other organs and tissues. Monoclonal antibodies and carbohydrate-based compounds (anti-Thomsen-Friedenreich antigen antibody, anti-galectin-3 antibody, modified citrus pectin, and lactulosyl-L-leucine), targeting specifically β-galactoside-mediated tumor-endothelial cell adhesive interactions, inhibited by >90% the in vivo formation of breast and prostate carcinoma metastatic deposits in mouse lung and bones. Our results indicate that metastatic cell arrest in target organ microvessels is not a consequence of mechanical trapping, but is supported predominantly by intercellular adhesive interactions mediated by cancer-associated Thomsen-Friedenreich glycoantigen and β-galactoside-binding lectin galectin-3. Efficient blocking of β-galactoside-mediated adhesion precludes malignant cell lodging in target organs.
    Keywords Cancer metastasis ; endothelium ; adhesion ; Thomsen-Friedenreich antigen ; galectins ; Medicine ; R ; Internal medicine ; RC31-1245 ; Neoplasms. Tumors. Oncology. Including cancer and carcinogens ; RC254-282
    Publishing date 2005-05-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: Development, Characterization, and Immunotherapeutic Use of Peptide Mimics of the Thomsen-Friedenreich Carbohydrate Antigen

    Jamie Heimburg-Molinaro / Adel Almogren / Susan Morey / Olga V. Glinskii / Rene Roy / Gregory E. Wilding / Richard P. Cheng / Vladislav V. Glinsky / Kate Rittenhouse-Olson

    Neoplasia : An International Journal for Oncology Research, Vol 11, Iss 8, Pp 780-

    2009  Volume 792

    Abstract: The tumor-associated carbohydrate Thomsen-Friedenreich antigen (TF-Ag; Galß1-3GalNAcα-O-Ser/Thr) is overexpressed on the cell surface of several types of tumor cells, contributing to cancer cell adhesion and metastasis to sites containing TF-Ag-binding ... ...

    Abstract The tumor-associated carbohydrate Thomsen-Friedenreich antigen (TF-Ag; Galß1-3GalNAcα-O-Ser/Thr) is overexpressed on the cell surface of several types of tumor cells, contributing to cancer cell adhesion and metastasis to sites containing TF-Ag-binding lectins. A highly specific immunoglobulin G3 monoclonal antibody (Ab) developed to TF-Ag (JAA-F11) impedes TF-Ag binding to vascular endothelium, blocking a primary metastatic step and providing a survival advantage. In addition, in patients, even low levels of antibodies to TF-Ag seem to improve prognosis; thus, it is expected that vaccines generating antibodies toward TF-Ag would be clinically valuable. Unfortunately, vaccinations with protein conjugates of carbohydrate tumor-associated Ags have induced clinically inadequate immune responses. However, immunization using peptides that mimic carbohydrate Ags such as Lewis has resulted in both Ab and T-cell responses. Here, we tested the hypothesis that vaccinations with unique TF-Ag peptide mimics may generate immune responses to TF-Ag epitopes on tumor cells, useful for active immunotherapy against relevant cancers. Peptide mimics of TF-Ag were selected by phage display biopanning using JAA-F11 and rabbit anti-TF-Ag Ab and were analyzed in vitro to confirm TF-Ag peptide mimicry. In vitro, TF-Ag peptide mimics bound to TF-Ag-specific peanut agglutinin and blocked TF-Ag-mediated rolling and stable adhesion of cancer cells to vascular endothelium. In vivo, the immunization with TF-Ag-mimicking multiple antigenic peptides induced TFAg- reactive Ab production. We propose that this novel active immunotherapy approach could decrease tumor burden in cancer patients by specifically targeting TF-Ag-positive cancer cells and blocking metastasis.
    Keywords Medicine ; R ; Internal medicine ; RC31-1245 ; Neoplasms. Tumors. Oncology. Including cancer and carcinogens ; RC254-282
    Subject code 610
    Publishing date 2009-08-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top