LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 1 of total 1

Search options

Article ; Online: Computational Prospecting for the Pharmacological Mechanism of Activity: HIV-1 Inhibition by Ixoratannin A-2.

Olubiyi, Olujide O / Idowu, Thomas O / Ogundaini, Abiodun O / Orhuah, Goodness

Current computer-aided drug design

2019  Volume 16, Issue 4, Page(s) 376–388

Abstract: Background: Ixora coccinea is a tropical ornamental shrub employed in ethnomedicine for the treatment of a number of diseases none of which include the Human Immunodeficiency Virus (HIV) infection. Ixoratannin A-2, one of the constituents, was ... ...

Abstract Background: Ixora coccinea is a tropical ornamental shrub employed in ethnomedicine for the treatment of a number of diseases none of which include the Human Immunodeficiency Virus (HIV) infection. Ixoratannin A-2, one of the constituents, was previously identified via virtual-screening and experimentally confirmed to possess significant anti-HIV-1 activity in an in vitro CD4+ replication assay. This activity was observed to be significantly reduced in degree in viruses lacking the protein Vpu. This suggests the involvement of Vpu as well as other extra-Vpu macromolecules in its antiviral activity.
Methods: In the present computational search for the identity of the other macromolecules that could possibly explain the observed activity, a panel of fourteen established HIV-1 macromolecular targets was assembled against which ixoratannin A-2 and other major phytoconstituents of I. coccinea were virtually screened.
Results: Structural analyses of the computed ligand-bound complexes, as well as the careful investigation of the thermodynamic attributes of the predicted binding, revealed subtle selectivity patterns at the atomistic level that suggest the likely involvement of multiple macromolecular processes. Some of the binding interactions were found to be thermodynamically favourable, including the multidrug-resistant HIV protease enzyme, CXCR4 and the human elongin C protein all of which formed reasonably strong interactions with ixoratannin A-2 and other constituents of I. coccinea.
Conclusion: Ixoratannin A-2's ability to favourably interact with multiple HIV-1 and human targets could explain its observed extra-Vpu antiviral activity. This, however, does not imply uncontrolled binding with all available targets; on the other hand, molecular size of ixoratannin A-2 and combination of functional groups confer on it a decent level of selectivity against many of the investigated HIV/AIDS targets.
MeSH term(s) Antiviral Agents/pharmacology ; HIV Infections/drug therapy ; HIV Infections/metabolism ; HIV-1/drug effects ; HIV-1/metabolism ; Humans ; Molecular Docking Simulation ; Proanthocyanidins/pharmacology ; Protein Interaction Maps/drug effects ; Thermodynamics
Chemical Substances Antiviral Agents ; Proanthocyanidins ; ixoratannin A-2
Language English
Publishing date 2019-07-02
Publishing country United Arab Emirates
Document type Journal Article
ISSN 1875-6697
ISSN (online) 1875-6697
DOI 10.2174/1573409915666190702111023
Database MEDical Literature Analysis and Retrieval System OnLINE

More links

Kategorien

To top