LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 4 of total 4

Search options

  1. Article ; Online: MTG16 regulates colonic epithelial differentiation, colitis, and tumorigenesis by repressing E protein transcription factors

    Rachel E. Brown / Justin Jacobse / Shruti A. Anant / Koral M. Blunt / Bob Chen / Paige N. Vega / Chase T. Jones / Jennifer M. Pilat / Frank Revetta / Aidan H. Gorby / Kristy R. Stengel / Yash A. Choksi / Kimmo Palin / M. Blanca Piazuelo / Mary Kay Washington / Ken S. Lau / Jeremy A. Goettel / Scott W. Hiebert / Sarah P. Short /
    Christopher S. Williams

    JCI Insight, Vol 7, Iss

    2022  Volume 10

    Abstract: Aberrant epithelial differentiation and regeneration contribute to colon pathologies, including inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Myeloid translocation gene 16 (MTG16, also known as CBFA2T3) is a transcriptional ... ...

    Abstract Aberrant epithelial differentiation and regeneration contribute to colon pathologies, including inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Myeloid translocation gene 16 (MTG16, also known as CBFA2T3) is a transcriptional corepressor expressed in the colonic epithelium. MTG16 deficiency in mice exacerbates colitis and increases tumor burden in CAC, though the underlying mechanisms remain unclear. Here, we identified MTG16 as a central mediator of epithelial differentiation, promoting goblet and restraining enteroendocrine cell development in homeostasis and enabling regeneration following dextran sulfate sodium–induced (DSS-induced) colitis. Transcriptomic analyses implicated increased Ephrussi box–binding transcription factor (E protein) activity in MTG16-deficient colon crypts. Using a mouse model with a point mutation that attenuates MTG16:E protein interactions (Mtg16P209T), we showed that MTG16 exerts control over colonic epithelial differentiation and regeneration by repressing E protein–mediated transcription. Mimicking murine colitis, MTG16 expression was increased in biopsies from patients with active IBD compared with unaffected controls. Finally, uncoupling MTG16:E protein interactions partially phenocopied the enhanced tumorigenicity of Mtg16–/– colon in the azoxymethane/DSS-induced model of CAC, indicating that MTG16 protects from tumorigenesis through additional mechanisms. Collectively, our results demonstrate that MTG16, via its repression of E protein targets, is a key regulator of cell fate decisions during colon homeostasis, colitis, and cancer.
    Keywords Cell biology ; Gastroenterology ; Medicine ; R
    Subject code 570
    Language English
    Publishing date 2022-05-01T00:00:00Z
    Publisher American Society for Clinical investigation
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Clinically adaptable polymer enables simultaneous spatial analysis of colonic tissues and biofilms

    Mary C. Macedonia / Julia L. Drewes / Nicholas O. Markham / Alan J. Simmons / Joseph T. Roland / Paige N. Vega / Cherie’ R. Scurrah / Robert J. Coffey / Martha J. Shrubsole / Cynthia L. Sears / Ken S. Lau

    npj Biofilms and Microbiomes, Vol 6, Iss 1, Pp 1-

    2020  Volume 10

    Abstract: Abstract Microbial influences on host cells depend upon the identities of the microbes, their spatial localization, and the responses they invoke on specific host cell populations. Multimodal analyses of both microbes and host cells in a spatially ... ...

    Abstract Abstract Microbial influences on host cells depend upon the identities of the microbes, their spatial localization, and the responses they invoke on specific host cell populations. Multimodal analyses of both microbes and host cells in a spatially resolved fashion would enable studies into these complex interactions in native tissue environments, potentially in clinical specimens. While techniques to preserve each of the microbial and host cell compartments have been used to examine tissues and microbes separately, we endeavored to develop approaches to simultaneously analyze both compartments. Herein, we established an original method for mucus preservation using Poloxamer 407 (also known as Pluronic F-127), a thermoreversible polymer with mucus-adhesive characteristics. We demonstrate that this approach can preserve spatially-defined compartments of the mucus bi-layer in the colon and the bacterial communities within, compared with their marked absence when tissues were processed with traditional formalin-fixed paraffin-embedded (FFPE) pipelines. Additionally, antigens for antibody staining of host cells were preserved and signal intensity for 16S rRNA fluorescence in situ hybridization (FISH) was enhanced in poloxamer-fixed samples. This in turn enabled us to integrate multimodal analysis using a modified multiplex immunofluorescence (MxIF) protocol. Importantly, we have formulated Poloxamer 407 to polymerize and cross-link at room temperature for use in clinical workflows. These results suggest that the fixative formulation of Poloxamer 407 can be integrated into biospecimen collection pipelines for simultaneous analysis of microbes and host cells.
    Keywords Microbial ecology ; QR100-130
    Language English
    Publishing date 2020-09-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Heterogeneity and dynamics of active Kras-induced dysplastic lineages from mouse corpus stomach

    Jimin Min / Paige N. Vega / Amy C. Engevik / Janice A. Williams / Qing Yang / Loraine M. Patterson / Alan J. Simmons / R. Jarrett Bliton / Joshua W. Betts / Ken S. Lau / Scott T. Magness / James R. Goldenring / Eunyoung Choi

    Nature Communications, Vol 10, Iss 1, Pp 1-

    2019  Volume 16

    Abstract: How a precancerous form (dysplasia) becomes gastric cancer is unclear. Here, the authors assess the role of Kras activation in heterogenous dysplastic cells in murine stomach corpus organoids, identifying two dysplastic stem cell populations and show ... ...

    Abstract How a precancerous form (dysplasia) becomes gastric cancer is unclear. Here, the authors assess the role of Kras activation in heterogenous dysplastic cells in murine stomach corpus organoids, identifying two dysplastic stem cell populations and show that MEK inhibition causes alterations in cell behavior.
    Keywords Science ; Q
    Language English
    Publishing date 2019-12-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Heterogeneity and dynamics of active Kras-induced dysplastic lineages from mouse corpus stomach

    Jimin Min / Paige N. Vega / Amy C. Engevik / Janice A. Williams / Qing Yang / Loraine M. Patterson / Alan J. Simmons / R. Jarrett Bliton / Joshua W. Betts / Ken S. Lau / Scott T. Magness / James R. Goldenring / Eunyoung Choi

    Nature Communications, Vol 10, Iss 1, Pp 1-

    2019  Volume 16

    Abstract: How a precancerous form (dysplasia) becomes gastric cancer is unclear. Here, the authors assess the role of Kras activation in heterogenous dysplastic cells in murine stomach corpus organoids, identifying two dysplastic stem cell populations and show ... ...

    Abstract How a precancerous form (dysplasia) becomes gastric cancer is unclear. Here, the authors assess the role of Kras activation in heterogenous dysplastic cells in murine stomach corpus organoids, identifying two dysplastic stem cell populations and show that MEK inhibition causes alterations in cell behavior.
    Keywords Science ; Q
    Language English
    Publishing date 2019-12-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top