LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 13

Search options

  1. Article ; Online: Satellite monitoring of bio-fertilizer restoration in olive groves affected by Xylella fastidiosa subsp. pauca

    Palma Blonda / Cristina Tarantino / Marco Scortichini / Sabino Maggi / Maria Tarantino / Maria Adamo

    Scientific Reports, Vol 13, Iss 1, Pp 1-

    2023  Volume 20

    Abstract: Abstract Xylella fastidiosa subsp. pauca (Xfp), has attacked the olive trees in Southern Italy with severe impacts on the olive agro-ecosystem. To reduce both the Xfp cell concentration and the disease symptom, a bio-fertilizer restoration technique has ... ...

    Abstract Abstract Xylella fastidiosa subsp. pauca (Xfp), has attacked the olive trees in Southern Italy with severe impacts on the olive agro-ecosystem. To reduce both the Xfp cell concentration and the disease symptom, a bio-fertilizer restoration technique has been used. Our study applied multi-resolution satellite data to evaluate the effectiveness of such technique at both field and tree scale. For field scale, a time series of High Resolution (HR) Sentinel-2 images, acquired in the months of July and August from 2015 to 2020, was employed. First, four spectral indices from treated and untreated fields were compared. Then, their trends were correlated to meteo-events. For tree-scale, Very High Resolution (VHR) Pléiades images were selected at the closest dates of the Sentinel-2 data to investigate the response to treatments of each different cultivar. All indices from HR and VHR images were higher in treated fields than in those untreated. The analysis of VHR indices revealed that Oliarola Salentina can respond better to treatments than Leccino and Cellina cultivars. All findings were in agreement with in-field PCR results. Hence, HR data could be used to evaluate plant conditions at field level after treatments, while VHR imagery could be used to optimize treatment doses per cultivar.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2023-04-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Improvement of a Dasymetric Method for Implementing Sustainable Development Goal 11 Indicators at an Intra-Urban Scale

    Mariella Aquilino / Maria Adamo / Palma Blonda / Angela Barbanente / Cristina Tarantino

    Remote Sensing, Vol 13, Iss 2835, p

    2021  Volume 2835

    Abstract: Local and Regional Authorities require indicators at the intra-urban scale to design adequate policies to foster the achievement of the objectives of Sustainable Development Goal (SDG) 11. Updated high-resolution population density and settlement maps ... ...

    Abstract Local and Regional Authorities require indicators at the intra-urban scale to design adequate policies to foster the achievement of the objectives of Sustainable Development Goal (SDG) 11. Updated high-resolution population density and settlement maps are the basic input products for such indicators and their sub-indicators. When provided at the intra-urban scale, these essential variables can facilitate the extraction of population flows, including both local and regular migrant components. This paper discusses a modification of the dasymetric method implemented in our previous work, aimed at improving the population density estimation. The novelties of our paper include the introduction of building height information and site-specific weight values for population density correction. Based on the proposed improvements, selected indicators/sub-indicators of four SDG 11 targets were updated or newly implemented. The output density map error values are provided in terms of the mean absolute error, root mean square error and mean absolute percentage indicators. The values obtained (i.e., 2.3 and 4.1 people, and 8.6%, respectively) were lower than those of the previous dasymetric method. The findings suggest that the new methodology can provide updated information about population fluxes and processes occurring over the period 2011–2020 in the study site—Bari city in southern Italy.
    Keywords EO data ; LiDAR ; fine-grid population map ; regular migrant population ; SDG 11 indicators ; inclusion policy ; Science ; Q
    Subject code 001
    Language English
    Publishing date 2021-07-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Earth Observation for the Implementation of Sustainable Development Goal 11 Indicators at Local Scale

    Mariella Aquilino / Cristina Tarantino / Maria Adamo / Angela Barbanente / Palma Blonda

    Remote Sensing, Vol 12, Iss 6, p

    Monitoring of the Migrant Population Distribution

    2020  Volume 950

    Abstract: This study focused on implementation of the Sustainable Development Goal (SDG) 11 indicators, at local scale, useful in monitoring urban social resilience. For this purpose, the study focused on updating the distribution map of the migrant population ... ...

    Abstract This study focused on implementation of the Sustainable Development Goal (SDG) 11 indicators, at local scale, useful in monitoring urban social resilience. For this purpose, the study focused on updating the distribution map of the migrant population regularly residing in Bari and a neighboring town in Southern Italy. The area is exposed to increasing migration fluxes. The method implemented was based on the integration of Sentinel-2 imagery and updated census information dated 1 January 2019. The study explored a vector-based variant of the dasymetric mapping approach previously used by the Joint Research Center (JRC) within the Data for Integration initiative (D4I). The dasymetric variant implemented can disaggregate data from census areas into a uniform spatial grid by preserving the information complexity of each output grid cell and ensure lower computational costs. The spatial distribution map of regular migrant population obtained, along with other updated ancillary data, were used to quantify, at local level, SDG 11 indicators. In particular, the map of regular migrant population living in inadequate housing (SDG 11.1.1) and the ratio of land consumption rate to regular migrant population growth rate (SDG 11.3.1) were implemented as specific categories of SDG 11 in 2018. At the local level, the regular migrant population density map and the SDG 11 indicator values were provided for each 100 × 100 m cell of an output grid. Obtained for 2018, the spatial distribution map revealed in Bari a high increase of regular migrant population in the same two zones of the city already evidenced in 2011. These zones are located in central parts of the city characterized by urban decay and abandoned buildings. In all remaining city zones, only a slight generalized increase was evidenced. Thus, these findings stress the need for adequate policies to reduce the ongoing process of residential urban segregation. The total of disaggregated values of migrant population evidenced an increase of 44.5% in regular migrant population. The indicators obtained could support urban planners and decision makers not only in the increasing migration pressure management, but also in the local level monitoring of Agenda 2030 progress related to SDG 11.
    Keywords eo data ; indicators ; migrant population ; sdg 11.1.1 ; sdg 11.3.1 ; sentinel-2 ; urban resilience ; Science ; Q
    Subject code 710
    Language English
    Publishing date 2020-03-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Intra-Annual Sentinel-2 Time-Series Supporting Grassland Habitat Discrimination

    Cristina Tarantino / Luigi Forte / Palma Blonda / Saverio Vicario / Valeria Tomaselli / Carl Beierkuhnlein / Maria Adamo

    Remote Sensing, Vol 13, Iss 2, p

    2021  Volume 277

    Abstract: The present study aims to discriminate four semi-arid grassland habitats in a Mediterranean Natura 2000 site, Southern Italy, involving 6210/E1.263, 62A0/E1.55, 6220/E1.434 and X/E1.61-E1.C2-E1.C4 (according to Annex I of the European Habitat Directive/ ... ...

    Abstract The present study aims to discriminate four semi-arid grassland habitats in a Mediterranean Natura 2000 site, Southern Italy, involving 6210/E1.263, 62A0/E1.55, 6220/E1.434 and X/E1.61-E1.C2-E1.C4 (according to Annex I of the European Habitat Directive/EUropean Nature Information System (EUNIS) taxonomies). For this purpose, an intra-annual time-series of 30 Sentinel-2 images, embedding phenology information, were investigated for 2018. The methodology adopted was based on a two-stage workflow employing a Support Vector Machine classifier. In the first stage only four Sentinel-2 multi-season images were analyzed, to provide an updated land cover map from where the grassland layer was extracted. The layer obtained was then used for masking the input features to the second stage. The latter stage discriminated the four grassland habitats by analyzing several input features configurations. These included multiple spectral indices selected from the time-series and the Digital Terrain Model. The results obtained from the different input configurations selected were compared to evaluate if the phenology information from time-series could improve grassland habitats discrimination. The highest F1 values (95.25% and 80.27%) were achieved for 6210/E1.263 and 6220/E1.434, respectively, whereas the results remained stable (97,33%) for 62A0/E1.55 and quite low (75,97%) for X/E1.61-E1.C2-E1.C4. However, since for all the four habitats analyzed no single configuration resulted effective, a Majority Vote algorithm was applied to achieve a reduction in classification uncertainty.
    Keywords grassland ; habitat mapping ; Natura 2000 ; Sentinel-2 ; spectral index ; time-series ; Science ; Q
    Subject code 550
    Language English
    Publishing date 2021-01-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: EO4Migration

    Mariella Aquilino / Cristina Tarantino / Eleni Athanasopoulou / Evangelos Gerasopoulos / Palma Blonda / Giuliana Quattrone / Silvana Fuina / Maria Adamo

    Remote Sensing, Vol 14, Iss 4295, p

    The Design of an EO-Based Solution in Support of Migrants’ Inclusion and Social-Cohesion Policies

    2022  Volume 4295

    Abstract: The purpose of this research is to demonstrate the strong potential of Earth-observation (EO) data and techniques in support of migration policies, and to propose actions to fill the existing structural gaps. The work was carried out within the “Smart ... ...

    Abstract The purpose of this research is to demonstrate the strong potential of Earth-observation (EO) data and techniques in support of migration policies, and to propose actions to fill the existing structural gaps. The work was carried out within the “Smart URBan Solutions for air quality, disasters and city growth” (SMURBS, ERA-PLANET/H2020) project. The novelties introduced by the implemented solutions are based on the exploitation and synergy of data from different EO platforms (satellite, aerial, and in situ). The migration theme is approached from different perspectives. Among these, this study focuses on the design process of an EO-based solution for tailoring and monitoring the SDG 11 indicators in support of those stakeholders involved in migration issues, evaluating the consistency of the obtained results by their compliance with the pursued objective and the current policy framework. Considering the city of Bari (southern Italy) as a case study, significant conclusions were derived with respect to good practices and obstacles during the implementation and application phases. These were considered to deliver an EO-based proposal to address migrants’ inclusion in urban areas, and to unfold the steps needed for replicating the solution in other cities within and outside Europe in a standardized manner.
    Keywords Earth-observation ; human settlement ; population density ; migration ; Sustainable Development Goal 11 ; New Urban Agenda ; Science ; Q
    Subject code 720
    Language English
    Publishing date 2022-08-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Knowledge-Based Classification of Grassland Ecosystem Based on Multi-Temporal WorldView-2 Data and FAO-LCCS Taxonomy

    Maria Adamo / Valeria Tomaselli / Cristina Tarantino / Saverio Vicario / Giuseppe Veronico / Richard Lucas / Palma Blonda

    Remote Sensing, Vol 12, Iss 1447, p

    2020  Volume 1447

    Abstract: Grassland ecosystems can provide a variety of services for humans, such as carbon storage, food production, crop pollination and pest regulation. However, grasslands are today one of the most endangered ecosystems due to land use change, agricultural ... ...

    Abstract Grassland ecosystems can provide a variety of services for humans, such as carbon storage, food production, crop pollination and pest regulation. However, grasslands are today one of the most endangered ecosystems due to land use change, agricultural intensification, land abandonment as well as climate change. The present study explores the performance of a knowledge-driven GEOgraphic-Object—based Image Analysis (GEOBIA) learning scheme to classify Very High Resolution (VHR) images for natural grassland ecosystem mapping. The classification was applied to a Natura 2000 protected area in Southern Italy. The Food and Agricultural Organization Land Cover Classification System (FAO-LCCS) hierarchical scheme was instantiated in the learning phase of the algorithm. Four multi-temporal WorldView-2 (WV-2) images were classified by combining plant phenology and agricultural practices rules with prior-image spectral knowledge. Drawing on this knowledge, spectral bands and entropy features from one single date (Post Peak of Biomass) were firstly used for multiple-scale image segmentation into Small Objects (SO) and Large Objects (LO). Thereafter, SO were labelled by considering spectral and context-sensitive features from the whole multi-seasonal data set available together with ancillary data. Lastly, the labelled SO were overlaid to LO segments and, in turn, the latter were labelled by adopting FAO-LCCS criteria about the SOs presence dominance in each LO. Ground reference samples were used only for validating the SO and LO output maps. The knowledge driven GEOBIA classifier for SO classification obtained an OA value of 97.35% with an error of 0.04. For LO classification the value was 75.09% with an error of 0.70. At SO scale, grasslands ecosystem was classified with 92.6%, 99.9% and 96.1% of User’s, Producer’s Accuracy and F1-score, respectively. The findings reported indicate that the knowledge-driven approach not only can be applied for (semi)natural grasslands ecosystem mapping in vast and not accessible areas but ...
    Keywords expert knowledge ; Very High Resolution (VHR) ; grasslands ecosystems ; object-based classification ; Science ; Q
    Subject code 333
    Language English
    Publishing date 2020-05-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Sentinel-2 Remote Sensed Image Classification with Patchwise Trained ConvNets for Grassland Habitat Discrimination

    Paolo Fazzini / Giuseppina De Felice Proia / Maria Adamo / Palma Blonda / Francesco Petracchini / Luigi Forte / Cristina Tarantino

    Remote Sensing, Vol 13, Iss 2276, p

    2021  Volume 2276

    Abstract: The present study focuses on the use of Convolutional Neural Networks (CNN or ConvNet) to classify a multi-seasonal dataset of Sentinel-2 images to discriminate four grassland habitats in the “Murgia Alta” protected site. To this end, we compared two ... ...

    Abstract The present study focuses on the use of Convolutional Neural Networks (CNN or ConvNet) to classify a multi-seasonal dataset of Sentinel-2 images to discriminate four grassland habitats in the “Murgia Alta” protected site. To this end, we compared two approaches differing only by the first layer machinery, which, in one case, is instantiated as a fully-connected layer and, in the other case, results in a ConvNet equipped with kernels covering the whole input (wide-kernel ConvNet). A patchwise approach, tessellating training reference data in square patches, was adopted. Besides assessing the effectiveness of ConvNets with patched multispectral data, we analyzed how the information needed for classification spreads to patterns over convex sets of pixels. Our results show that: (a) with an F1-score of around 97% (5 × 5 patch size), ConvNets provides an excellent tool for patch-based pattern recognition with multispectral input data without requiring special feature extraction; (b) the information spreads over the limit of a single pixel: the performance of the network increases until 5 × 5 patch sizes are used and then ConvNet performance starts decreasing.
    Keywords grassland ; habitat mapping ; Sentinel-2 ; convolutional neural network ; Science ; Q
    Subject code 006
    Language English
    Publishing date 2021-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: A Revised Snow Cover Algorithm to Improve Discrimination between Snow and Clouds

    Chiara Richiardi / Palma Blonda / Fabio Michele Rana / Mattia Santoro / Cristina Tarantino / Saverio Vicario / Maria Adamo

    Remote Sensing, Vol 13, Iss 1957, p

    A Case Study in Gran Paradiso National Park

    2021  Volume 1957

    Abstract: Snow cover plays an important role in biotic and abiotic environmental processes, as well as human activities, on both regional and global scales. Due to the difficulty of in situ data collection in vast and inaccessible areas, the use of optical ... ...

    Abstract Snow cover plays an important role in biotic and abiotic environmental processes, as well as human activities, on both regional and global scales. Due to the difficulty of in situ data collection in vast and inaccessible areas, the use of optical satellite imagery represents a useful support for snow cover mapping. At present, several operational snow cover algorithms and products are available. Even though most of them offer an up-to-daily time scale, they do not provide sufficient spatial resolution for studies requiring high spatial detail. By contrast, the Let-It-Snow (LIS) algorithm can produce high-resolution snow cover maps, based on the use of both the normalized-difference snow index (NDSI) and a digital elevation model. The latter is introduced to define a threshold value on the altitude, below which the presence of snow is excluded. In this study, we revised the LIS algorithm by introducing a new parameter, based on a threshold in the shortwave infrared (SWIR) band, and by modifying the overall algorithm workflow, such that the cloud mask selection can be used as an input. The revised algorithm has been applied to a case study in Gran Paradiso National Park. Unlike previous studies, we also compared the performance of both the original and the modified algorithms in the presence of cloud cover, in order to evaluate their effectiveness in discriminating between snow and clouds. Ground data collected by meteorological stations equipped with both snow gauges and solarimeters were used for validation purposes. The changes introduced in the revised algorithm can improve upon the overall classification accuracy obtained by the original LIS algorithm (i.e., up to 89.17 from 80.88%). The producer’s and user’s accuracy values obtained by the modified algorithm (89.12 and 95.03%, respectively) were larger than those obtained by the original algorithm (76.68 and 93.67%, respectively), thus providing a more accurate snow cover map.
    Keywords snow cover ; NDSI ; Sentinel-2 ; algorithm ; snow/cloud classification ; Science ; Q
    Subject code 006
    Language English
    Publishing date 2021-05-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article: Ailanthus altissima mapping from multi-temporal very high resolution satellite images

    Tarantino, Cristina / Carl Beierkuhnlein / Francesca Casella / Maria Adamo / Palma Blonda / Richard Lucas

    ISPRS journal of photogrammetry and remote sensing. 2019 Jan., v. 147

    2019  

    Abstract: This study presents the results of multi-seasonal WorldView-2 (WV-2) satellite images classification for the mapping of Ailanthus altissima (A. altissima), an invasive plant species thriving in a protected grassland area of Southern Italy. The technique ... ...

    Abstract This study presents the results of multi-seasonal WorldView-2 (WV-2) satellite images classification for the mapping of Ailanthus altissima (A. altissima), an invasive plant species thriving in a protected grassland area of Southern Italy. The technique used relied on a two-stage hybrid classification process: the first stage applied a knowledge-driven learning scheme to provide a land cover map (LC), including deciduous vegetation and other classes, without the need of reference training data; the second stage exploited a data-driven classification to: (i) discriminate pixels of the invasive species found within the deciduous vegetation layer of the LC map; (ii) determine the most favourable seasons for such recognition. In the second stage, when a traditional Maximum Likelihood classifier was used, the results obtained with multi-temporal July and October WV-2 images, showed an output Overall Accuracy (OA) value of ≈91%. To increase such a value, first a low-pass median filtering was used with a resulting OA of 99.2%, then, a Support Vector Machine classifier was applied obtaining the best A. altissima User’s Accuracy (UA) and OA values of 82.47% and 97.96%, respectively, without any filtering. When instead of the full multi-spectral bands set some spectral vegetation indices computed from the same months were used the UA and OA values decreased. The findings reported suggest that multi-temporal, very high resolution satellite imagery can be effective for A. altissima mapping, especially when airborne hyperspectral data are unavailable. Since training data are required only in the second stage to discriminate A. altissima from other deciduous plants, the use of the first stage LC mapping as pre-filter can render the hybrid technique proposed cost and time effective. Multi-temporal VHR data and the hybrid system suggested may offer new opportunities for invasive plant monitoring and follow up of management decision.
    Keywords Ailanthus altissima ; grasslands ; invasive species ; land cover ; monitoring ; plants (botany) ; remote sensing ; statistical analysis ; support vector machines ; vegetation index ; Italy
    Language English
    Dates of publication 2019-01
    Size p. 90-103.
    Publishing place Elsevier B.V.
    Document type Article
    ZDB-ID 1007774-1
    ISSN 0924-2716
    ISSN 0924-2716
    DOI 10.1016/j.isprsjprs.2018.11.013
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  10. Article: Detection of changes in semi-natural grasslands by cross correlation analysis with WorldView-2 images and new Landsat 8 data

    Tarantino, Cristina / Maria Adamo / Palma Blonda / Richard Lucas

    Remote sensing of environment. 2016 Mar. 15, v. 175

    2016  

    Abstract: Focusing on a Mediterranean Natura 2000 site in Italy, the effectiveness of the cross correlation analysis (CCA) technique for quantifying change in the area of semi-natural grasslands at different spatial resolutions (grain) was evaluated. In a fine ... ...

    Abstract Focusing on a Mediterranean Natura 2000 site in Italy, the effectiveness of the cross correlation analysis (CCA) technique for quantifying change in the area of semi-natural grasslands at different spatial resolutions (grain) was evaluated. In a fine scale analysis (2m), inputs to the CCA were a) a semi-natural grasslands layer extracted from an existing validated land cover/land use (LC/LU) map (1:5000, time T1) and b) a more recent single date very high resolution (VHR) WorldView-2 image (time T2), with T2>T1. The changes identified through the CCA were compared against those detected by applying a traditional post-classification comparison (PCC) technique to the same reference T1 map and an updated T2 map obtained by a knowledge driven classification of four multi-seasonal Worldview-2 input images. Specific changes observed were those associated with agricultural intensification and fires. The study concluded that prior knowledge (spectral class signatures, awareness of local agricultural practices and pressures) was needed for the selection of the most appropriate image (in terms of seasonality) to be acquired at T2. CCA was also applied to the comparison of the existing T1 map with recent high resolution (HR) Landsat 8 OLS images. The areas of change detected at VHR and HR were broadly similar with larger error values in HR change images.
    Keywords fires ; grasslands ; intensive farming ; land cover ; land use ; Landsat ; remote sensing ; Italy
    Language English
    Dates of publication 2016-0315
    Size p. 65-72.
    Publishing place Elsevier Inc.
    Document type Article
    ZDB-ID 431483-9
    ISSN 0034-4257
    ISSN 0034-4257
    DOI 10.1016/j.rse.2015.12.031
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

To top