LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 1 of total 1

Search options

Article ; Online: QuikSCAT Climatological Data Record

Alexander G. Fore / Bryan W. Stiles / Paul Ted Strub / Richard D. West

Remote Sensing, Vol 14, Iss 2487, p

Land Contamination Flagging and Correction

2022  Volume 2487

Abstract: We develop, utilize, and validate techniques to produce a global data set of accurate coastal ocean surface vector winds. The dataset extends as near to the coast as 5 km and includes 10 years of SeaWinds on QuikSCAT ocean scatterometer data obtained ... ...

Abstract We develop, utilize, and validate techniques to produce a global data set of accurate coastal ocean surface vector winds. The dataset extends as near to the coast as 5 km and includes 10 years of SeaWinds on QuikSCAT ocean scatterometer data obtained from 1999 to 2009. We demonstrate improved retrievals over other large land-locked bodies of water as well, such as the Caspian Sea and the Great lakes. To determine the coastal winds we quantify the extent of land contamination in each scatterometer backscatter measurement and to the extent possible remove that contamination. After the measurements are thus corrected we retrieve winds with the corrected measurements using a previously published algorithm which has been extensively used for JPL scatterometer wind products. The coastal processing vastly increases the number of wind vector cells near coasts. We have ten times the number of wind vectors within 10 km of coast as without coastal processing, and over twice as many at 20 km from coast. These new wind vectors are high-quality, and have zero effect on non-coastal wind vectors. The effect of residual land contamination is quantified by comparing to buoys at varying distance from the coast and comparing coastal wind vector cells to oceanward neighbors. We show that the non-coastal QuikSCAT processing has very few good wind vectors nearer to the coast than about 22.5 km. In comparison to buoys, and oceanward neighbors, we find a small increase in speed errors of these new coastal wind vectors versus the performance of non-coastal QuikSCAT at 22.5 km, indicating the high-quality of these new coastal wind vectors. A quality control scheme is employed that flags regions where the coastal wind retrieval is poor due to the assumptions inherent in the technique being locally invalid. The coastal winds retrieved in this manner have been publicly distributed to the oceanography community and utilized in other published works.
Keywords scatterometery ; radar ; coastal winds ; ocean vector winds ; Science ; Q
Subject code 551
Language English
Publishing date 2022-05-01T00:00:00Z
Publisher MDPI AG
Document type Article ; Online
Database BASE - Bielefeld Academic Search Engine (life sciences selection)

More links

Kategorien

To top