LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article: The maturation of auditory responses in infants and young children: a cross-sectional study from 6 to 59 months.

    Edgar, J Christopher / Murray, Rebecca / Kuschner, Emily S / Pratt, Kevin / Paulson, Douglas N / Dell, John / Golembski, Rachel / Lam, Peter / Bloy, Luke / Gaetz, William / Roberts, Timothy P L

    Frontiers in neuroanatomy

    2015  Volume 9, Page(s) 131

    Abstract: Background: An understanding of the maturation of auditory cortex responses in typically developing infants and toddlers is needed to later identify auditory processing abnormalities in infants at risk for neurodevelopmental disorders. The availability ... ...

    Abstract Background: An understanding of the maturation of auditory cortex responses in typically developing infants and toddlers is needed to later identify auditory processing abnormalities in infants at risk for neurodevelopmental disorders. The availability of infant and young child magnetoencephalography (MEG) systems may now provide near optimal assessment of left and right hemisphere auditory neuromagnetic responses in young populations. To assess the performance of a novel whole-head infant MEG system, a cross-sectional study examined the maturation of left and right auditory cortex responses in children 6- to 59-months of age.
    Methods: Blocks of 1000 Hz (1st and 3rd blocks) and 500 Hz tones (2nd block) were presented while MEG data were recorded using an infant/young child biomagnetometer (Artemis 123). Data were obtained from 29 children (11 males; 6- to 59-months). Latency measures were obtained for the first positive-to-negative evoked response waveform complex in each hemisphere. Latency and age associations as well as frequency and hemisphere latency differences were examined. For the 1000 Hz tone, measures of reliability were computed.
    Results: For the first response-a response with a "P2m" topography-latencies decreased as a function of age. For the second response-a response with a "N2m" topography-no N2m latency and age relationships were observed. A main effect of tone frequency showed earlier P2m responses for 1st 1000 Hz (150 ms) and 2nd 1000 Hz (148 ms) vs. 500 Hz tones (162 ms). A significant main effect of hemisphere showed earlier N2m responses for 2nd 1000 Hz (226 ms) vs. 1st 1000 Hz (241 ms) vs. 500 Hz tones (265 ms). P2m and N2m interclass correlation coefficient latency findings were as follows: left P2m (0.72, p < 0.001), right P2m (0.84, p < 0.001), left N2m (0.77, p < 0.001), and right N2m (0.77,p < 0.01).
    Conclusions: Findings of strong age and latency associations, sensitivity to tone frequency, and good test-retest reliability support the viability of longitudinal infant MEG studies that include younger as well as older participants as well as studies examining auditory processing abnormalities in infants at risk for neurodevelopmental disorders.
    Language English
    Publishing date 2015-10-16
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2452969-2
    ISSN 1662-5129
    ISSN 1662-5129
    DOI 10.3389/fnana.2015.00131
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article: Artemis 123: development of a whole-head infant and young child MEG system.

    Roberts, Timothy P L / Paulson, Douglas N / Hirschkoff, Eugene / Pratt, Kevin / Mascarenas, Anthony / Miller, Paul / Han, Mengali / Caffrey, Jason / Kincade, Chuck / Power, Bill / Murray, Rebecca / Chow, Vivian / Fisk, Charlie / Ku, Matthew / Chudnovskaya, Darina / Dell, John / Golembski, Rachel / Lam, Peter / Blaskey, Lisa /
    Kuschner, Emily / Bloy, Luke / Gaetz, William / Edgar, J Christopher

    Frontiers in human neuroscience

    2014  Volume 8, Page(s) 99

    Abstract: Background: A major motivation in designing the new infant and child magnetoencephalography (MEG) system described in this manuscript is the premise that electrophysiological signatures (resting activity and evoked responses) may serve as biomarkers of ... ...

    Abstract Background: A major motivation in designing the new infant and child magnetoencephalography (MEG) system described in this manuscript is the premise that electrophysiological signatures (resting activity and evoked responses) may serve as biomarkers of neurodevelopmental disorders, with neuronal abnormalities in conditions such as autism spectrum disorder (ASD) potentially detectable early in development. Whole-head MEG systems are generally optimized/sized for adults. Since magnetic field produced by neuronal currents decreases as a function of distance(2) and infants and young children have smaller head sizes (and thus increased brain-to-sensor distance), whole-head adult MEG systems do not provide optimal signal-to-noise in younger individuals. This spurred development of a whole-head infant and young child MEG system - Artemis 123.
    Methods: In addition to describing the design of the Artemis 123, the focus of this manuscript is the use of Artemis 123 to obtain auditory evoked neuromagnetic recordings and resting-state data in young children. Data were collected from a 14-month-old female, an 18-month-old female, and a 48-month-old male. Phantom data are also provided to show localization accuracy.
    Results: Examination of Artemis 123 auditory data showed generalizability and reproducibility, with auditory responses observed in all participants. The auditory MEG measures were also found to be manipulable, exhibiting sensitivity to tone frequency. Furthermore, there appeared to be a predictable sensitivity of evoked components to development, with latencies decreasing with age. Examination of resting-state data showed characteristic oscillatory activity. Finally, phantom data showed that dipole sources could be localized with an error less than 0.5 cm.
    Conclusions: Artemis 123 allows efficient recording of high-quality whole-head MEG in infants four years and younger. Future work will involve examining the feasibility of obtaining somatosensory and visual recordings in similar-age children as well as obtaining recordings from younger infants. Thus, the Artemis 123 offers the promise of detecting earlier diagnostic signatures in such neurodevelopmental disorders.
    Language English
    Publishing date 2014-03-03
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2425477-0
    ISSN 1662-5161
    ISSN 1662-5161
    DOI 10.3389/fnhum.2014.00099
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top