LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 4 of total 4

Search options

  1. Article ; Online: Determining Frequency of Common Pulmonary Gross and Histopathological Findings in Feedyard Fatalities

    Paige H. Schmidt / Brad J. White / Abigail Finley / Eduarda M. Bortoluzzi / Brandon E. Depenbusch / Maddie Mancke / Rachel E. Brown / Makenna Jensen / Phillip A. Lancaster / Robert L. Larson

    Veterinary Sciences, Vol 10, Iss 228, p

    2023  Volume 228

    Abstract: Pulmonary disease is often associated with feedlot cattle mortality, and the most common syndromes include bronchopneumonia, acute interstitial pneumonia, and bronchopneumonia with an interstitial pneumonia. The study objective was to utilize gross ... ...

    Abstract Pulmonary disease is often associated with feedlot cattle mortality, and the most common syndromes include bronchopneumonia, acute interstitial pneumonia, and bronchopneumonia with an interstitial pneumonia. The study objective was to utilize gross necropsy and histopathology to determine the frequency of pulmonary lesions from three major syndromes and agreement between gross and histopathological diagnosis. A cross sectional, observational study was performed at six U.S. feedyards using a full systematic necropsy to assess mortalities during summer 2022. A subset of mortalities had four lung samples submitted for histopathological diagnosis. Gross necropsy was performed on 417 mortalities, 402 received a gross diagnosis and 189 had a histopathological diagnosis. Descriptive statistics were used to evaluate pulmonary diagnosis frequency based on method (gross/histopathology), and generalized linear mixed models were used to evaluate agreement between histopathological and gross diagnoses. Using gross diagnosis, bronchopneumonia represented 36.6% of cases with acute interstitial pneumonia and bronchopneumonia with an interstitial pneumonia representing 10.0% and 35.8%, respectively. Results identified bronchopneumonia with an interstitial pneumonia as a frequent syndrome which has only been recently reported. Histopathological diagnosis had similar findings; bronchopneumonia represented 32.3% of cases, with acute interstitial pneumonia and bronchopneumonia with an interstitial pneumonia representing 12.2% and 36.0%, respectively. Histopathological diagnosis tended ( p -VALUE = 0.06) to be associated with gross diagnosis. Pulmonary disease was common and both diagnostic modalities illustrated three primary syndromes: bronchopneumonia, acute interstitial pneumonia, and bronchopneumonia with an interstitial pneumonia with similar frequencies. Improved understanding of pulmonary pathology can be valuable for evaluating and adjusting therapeutic interventions.
    Keywords necropsy ; bovine respiratory disease ; feedyard ; histopathology ; lung ; bronchopneumonia ; Veterinary medicine ; SF600-1100
    Subject code 610
    Language English
    Publishing date 2023-03-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: SELENOP modifies sporadic colorectal carcinogenesis and WNT signaling activity through LRP5/6 interactions

    Jennifer M. Pilat / Rachel E. Brown / Zhengyi Chen / Nathaniel J. Berle / Adrian P. Othon / M. Kay Washington / Shruti A. Anant / Suguru Kurokawa / Victoria H. Ng / Joshua J. Thompson / Justin Jacobse / Jeremy A. Goettel / Ethan Lee / Yash A. Choksi / Ken S. Lau / Sarah P. Short / Christopher S. Williams

    The Journal of Clinical Investigation, Vol 133, Iss

    2023  Volume 13

    Abstract: Although selenium deficiency correlates with colorectal cancer (CRC) risk, the roles of the selenium-rich antioxidant selenoprotein P (SELENOP) in CRC remain unclear. In this study, we defined SELENOP’s contributions to sporadic CRC. In human single-cell ...

    Abstract Although selenium deficiency correlates with colorectal cancer (CRC) risk, the roles of the selenium-rich antioxidant selenoprotein P (SELENOP) in CRC remain unclear. In this study, we defined SELENOP’s contributions to sporadic CRC. In human single-cell cRNA-Seq (scRNA-Seq) data sets, we discovered that SELENOP expression rose as normal colon stem cells transformed into adenomas that progressed into carcinomas. We next examined the effects of Selenop KO in a mouse adenoma model that involved conditional, intestinal epithelium-specific deletion of the tumor suppressor adenomatous polyposis coli (Apc) and found that Selenop KO decreased colon tumor incidence and size. We mechanistically interrogated SELENOP-driven phenotypes in tumor organoids as well as in CRC and noncancer cell lines. Selenop-KO tumor organoids demonstrated defects in organoid formation and decreases in WNT target gene expression, which could be reversed by SELENOP restoration. Moreover, SELENOP increased canonical WNT signaling activity in noncancer and CRC cell lines. In defining the mechanism of action of SELENOP, we mapped protein-protein interactions between SELENOP and the WNT coreceptors low-density lipoprotein receptor–related proteins 5 and 6 (LRP5/6). Last, we confirmed that SELENOP-LRP5/6 interactions contributed to the effects of SELENOP on WNT activity. Overall, our results position SELENOP as a modulator of the WNT signaling pathway in sporadic CRC.
    Keywords Gastroenterology ; Medicine ; R
    Subject code 570
    Language English
    Publishing date 2023-07-01T00:00:00Z
    Publisher American Society for Clinical Investigation
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: MTG16 regulates colonic epithelial differentiation, colitis, and tumorigenesis by repressing E protein transcription factors

    Rachel E. Brown / Justin Jacobse / Shruti A. Anant / Koral M. Blunt / Bob Chen / Paige N. Vega / Chase T. Jones / Jennifer M. Pilat / Frank Revetta / Aidan H. Gorby / Kristy R. Stengel / Yash A. Choksi / Kimmo Palin / M. Blanca Piazuelo / Mary Kay Washington / Ken S. Lau / Jeremy A. Goettel / Scott W. Hiebert / Sarah P. Short /
    Christopher S. Williams

    JCI Insight, Vol 7, Iss

    2022  Volume 10

    Abstract: Aberrant epithelial differentiation and regeneration contribute to colon pathologies, including inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Myeloid translocation gene 16 (MTG16, also known as CBFA2T3) is a transcriptional ... ...

    Abstract Aberrant epithelial differentiation and regeneration contribute to colon pathologies, including inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Myeloid translocation gene 16 (MTG16, also known as CBFA2T3) is a transcriptional corepressor expressed in the colonic epithelium. MTG16 deficiency in mice exacerbates colitis and increases tumor burden in CAC, though the underlying mechanisms remain unclear. Here, we identified MTG16 as a central mediator of epithelial differentiation, promoting goblet and restraining enteroendocrine cell development in homeostasis and enabling regeneration following dextran sulfate sodium–induced (DSS-induced) colitis. Transcriptomic analyses implicated increased Ephrussi box–binding transcription factor (E protein) activity in MTG16-deficient colon crypts. Using a mouse model with a point mutation that attenuates MTG16:E protein interactions (Mtg16P209T), we showed that MTG16 exerts control over colonic epithelial differentiation and regeneration by repressing E protein–mediated transcription. Mimicking murine colitis, MTG16 expression was increased in biopsies from patients with active IBD compared with unaffected controls. Finally, uncoupling MTG16:E protein interactions partially phenocopied the enhanced tumorigenicity of Mtg16–/– colon in the azoxymethane/DSS-induced model of CAC, indicating that MTG16 protects from tumorigenesis through additional mechanisms. Collectively, our results demonstrate that MTG16, via its repression of E protein targets, is a key regulator of cell fate decisions during colon homeostasis, colitis, and cancer.
    Keywords Cell biology ; Gastroenterology ; Medicine ; R
    Subject code 570
    Language English
    Publishing date 2022-05-01T00:00:00Z
    Publisher American Society for Clinical investigation
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Interleukin-23 receptor signaling impairs the stability and function of colonic regulatory T cells

    Justin Jacobse / Rachel E. Brown / Jing Li / Jennifer M. Pilat / Ly Pham / Sarah P. Short / Christopher T. Peek / Andrea Rolong / M. Kay Washington / Ruben Martinez-Barricarte / Mariana X. Byndloss / Catherine Shelton / Janet G. Markle / Yvonne L. Latour / Margaret M. Allaman / James E. Cassat / Keith T. Wilson / Yash A. Choksi / Christopher S. Williams /
    Ken S. Lau / Charles R. Flynn / Jean-Laurent Casanova / Edmond H.H.M. Rings / Janneke N. Samsom / Jeremy A. Goettel

    Cell Reports, Vol 42, Iss 2, Pp 112128- (2023)

    2023  

    Abstract: Summary: The cytokine interleukin-23 (IL-23) is involved in the pathogenesis of inflammatory and autoimmune conditions including inflammatory bowel disease (IBD). IL23R is enriched in intestinal Tregs, yet whether IL-23 modulates intestinal Tregs remains ...

    Abstract Summary: The cytokine interleukin-23 (IL-23) is involved in the pathogenesis of inflammatory and autoimmune conditions including inflammatory bowel disease (IBD). IL23R is enriched in intestinal Tregs, yet whether IL-23 modulates intestinal Tregs remains unknown. Here, investigating IL-23R signaling in Tregs specifically, we show that colonic Tregs highly express Il23r compared with Tregs from other compartments and their frequency is reduced upon IL-23 administration and impairs Treg suppressive function. Similarly, colonic Treg frequency is increased in mice lacking Il23r specifically in Tregs and exhibits a competitive advantage over IL-23R-sufficient Tregs during inflammation. Finally, IL-23 antagonizes liver X receptor pathway, cellular cholesterol transporter Abca1, and increases Treg apoptosis. Our results show that IL-23R signaling regulates intestinal Tregs by increasing cell turnover, antagonizing suppression, and decreasing cholesterol efflux. These results suggest that IL-23 negatively regulates Tregs in the intestine with potential implications for promoting chronic inflammation in patients with IBD.
    Keywords CP: Immunology ; Biology (General) ; QH301-705.5
    Subject code 610
    Language English
    Publishing date 2023-02-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top