LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 1 of total 1

Search options

Article ; Online: The nucleolus as a polarized coaxial cable in which the rDNA axis is surrounded by dynamic subunit-specific phases.

Tartakoff, Alan M / Chen, Lan / Raghavachari, Shashank / Gitiforooz, Daria / Dhinakaran, Akshyasri / Ni, Chun-Lun / Pasadyn, Cassandra / Mahabeleshwar, Ganapati H / Pasadyn, Vanessa / Woolford, John L

Current biology : CB

2021  Volume 31, Issue 12, Page(s) 2507–2519.e4

Abstract: In ribosomal DNA (rDNA) repeats, sequences encoding small-subunit (SSU) rRNA precede those encoding large-subunit (LSU) rRNAs. Processing the composite transcript and subunit assembly requires >100 subunit-specific nucleolar assembly factors (AFs). To ... ...

Abstract In ribosomal DNA (rDNA) repeats, sequences encoding small-subunit (SSU) rRNA precede those encoding large-subunit (LSU) rRNAs. Processing the composite transcript and subunit assembly requires >100 subunit-specific nucleolar assembly factors (AFs). To investigate the functional organization of the nucleolus, we localized AFs in S. cerevisiae in which the rDNA axis was "linearized" to reduce its dimensionality, thereby revealing its coaxial organization. In this situation, rRNA synthesis and processing continue. The axis is embedded in an inner layer/phase of SSU AFs that is surrounded by an outer layer/phase of LSU AFs. When subunit production is inhibited, subsets of AFs differentially relocate between the inner and outer layers, as expected if there is a cycle of repeated relocation whereby "latent" AFs become "operative" when recruited to nascent subunits. Recognition of AF cycling and localization of segments of rRNA make it possible to infer the existence of assembly intermediates that span between the inner and outer layers and to chart the cotranscriptional assembly of each subunit. AF cycling also can explain how having more than one protein phase in the nucleolus makes possible "vectorial 2-phase partitioning" as a driving force for relocation of nascent rRNPs. Because nucleoplasmic AFs are also present in the outer layer, we propose that critical surface remodeling occurs at this site, thereby partitioning subunit precursors into the nucleoplasm for post-transcriptional maturation. Comparison to observations on higher eukaryotes shows that the coaxial paradigm is likely to be applicable for the many other organisms that have rDNA repeats.
MeSH term(s) Cell Nucleolus/genetics ; DNA, Ribosomal/genetics ; RNA, Ribosomal/genetics ; Saccharomyces cerevisiae/cytology ; Saccharomyces cerevisiae/genetics
Chemical Substances DNA, Ribosomal ; RNA, Ribosomal
Language English
Publishing date 2021-04-15
Publishing country England
Document type Journal Article ; Research Support, N.I.H., Extramural
ZDB-ID 1071731-6
ISSN 1879-0445 ; 0960-9822
ISSN (online) 1879-0445
ISSN 0960-9822
DOI 10.1016/j.cub.2021.03.041
Shelf mark
Zs.A 3208: Show issues Location:
Je nach Verfügbarkeit (siehe Angabe bei Bestand)
bis Jg. 1994: Bestellungen von Artikeln über das Online-Bestellformular
Jg. 1995 - 2021: Lesesall (2.OG)
ab Jg. 2022: Lesesaal (EG)
Database MEDical Literature Analysis and Retrieval System OnLINE

More links

Kategorien

To top