LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 26

Search options

  1. Article ; Online: Anomalous Concentration Dependence of Surface Tension and Concentration-Concentration Correlation Functions of Binary Non-Electrolyte Solutions

    Carlo Carbone / Eduardo Guzmán / Ramón G. Rubio

    International Journal of Molecular Sciences, Vol 24, Iss 2276, p

    2023  Volume 2276

    Abstract: The concentration dependence of the surface tension of several binary mixtures of non-electrolytes has been measured at 298.15 K. The mixtures have been chosen since they presented a so-called “W-shape” concentration dependence of the excess constant ... ...

    Abstract The concentration dependence of the surface tension of several binary mixtures of non-electrolytes has been measured at 298.15 K. The mixtures have been chosen since they presented a so-called “W-shape” concentration dependence of the excess constant pressure heat capacity and high values of the concentration-concentration correlation function. This behavior was interpreted in terms of the existence of anomalously high concentration fluctuations that resemble those existing in the proximities of critical points. However, no liquid-liquid phase separation has been found in any of these mixtures over a wide temperature range. In this work, we have extended these studies to the liquid-air interfacial properties. The results show that the concentration dependence of the surface tension shows a plateau and the mixing surface tension presents a “W-shape” behavior. To the best of our knowledge, this is the first time that this behavior is reported. The weak anomalies of the surface tension near a liquid-liquid critical point suggest that the results obtained cannot be considered far-from-critical effects. The usual approach of substituting the activity by the concentration in the Gibbs equation for the relative surface concentration has been found to lead to large errors and the mixtures to have a fuzzy and thick liquid/vapor interface.
    Keywords binary mixtures ; critical point ; fluctuations ; non-electrolytes ; surface tension ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 612
    Language English
    Publishing date 2023-01-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Adsorption of Mixed Dispersions of Silica Nanoparticles and an Amphiphilic Triblock Copolymer at the Water–Vapor Interface

    Carlo Carbone / Alejandra Rubio-Bueno / Francisco Ortega / Ramón G. Rubio / Eduardo Guzmán

    Applied Sciences, Vol 13, Iss 10093, p

    2023  Volume 10093

    Abstract: This study investigates the surface modification of hydrophilic silica nanoparticles by non-chemical adsorption of an amphiphilic triblock copolymer, Pluronic F-127, and elucidates its influence on the interfacial dispersion properties. The interaction ... ...

    Abstract This study investigates the surface modification of hydrophilic silica nanoparticles by non-chemical adsorption of an amphiphilic triblock copolymer, Pluronic F-127, and elucidates its influence on the interfacial dispersion properties. The interaction between Pluronic F-127 and silica nanoparticles drives the formation of copolymer-decorated particles with increased hydrodynamic diameter and reduced effective charge as the copolymer concentration increases, while the opposite effect occurs as the particle concentration increases at a fixed polymer concentration. This indicates that increasing the copolymer concentration leads to an increase in the coating density, whereas increasing the particle concentration leads to a decrease. This is of paramount importance for modulating the reorganization of the Pluronic F-127 shell upon adsorption at fluid–fluid interfaces and, thus, the adsorption of the decorated nanoparticles at the interface and the rheological properties of the obtained layers. In fact, the relationship between copolymer concentration and interfacial tension, as well as the mechanical response of the interface, mirrors the patterns observed in Pluronic F-127 solutions, and only a shift mediated by the Pluronic F-127 concentration is found. This suggests that the presence of particles limits the space available for Pluronic F-127 molecules to reorganize at the interface but does not significantly affect the interfacial behavior of the particle-laden interface.
    Keywords adsorption ; amphiphilic triblock copolymers ; association ; complexes ; dilational rheology ; fluid interfaces ; Technology ; T ; Engineering (General). Civil engineering (General) ; TA1-2040 ; Biology (General) ; QH301-705.5 ; Physics ; QC1-999 ; Chemistry ; QD1-999
    Subject code 620
    Language English
    Publishing date 2023-09-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Monolayers of Cholesterol and Cholesteryl Stearate at the Water/Vapor Interface

    Ramón G. Rubio / Eduardo Guzmán / Francisco Ortega / Libero Liggieri

    Colloids and Interfaces, Vol 5, Iss 30, p

    A Physico-Chemical Study of Components of the Meibum Layer

    2021  Volume 30

    Abstract: Langmuir monolayers containing different amounts of cholesterol and cholesteryl stearate were studied at two different temperatures (24 °C and 35 °C). The main goal was to contribute towards the understanding of how the variations in the chemical ... ...

    Abstract Langmuir monolayers containing different amounts of cholesterol and cholesteryl stearate were studied at two different temperatures (24 °C and 35 °C). The main goal was to contribute towards the understanding of how the variations in the chemical composition may affect the physico-chemical properties of these specific lipid monolayers. The model mixture was chosen considering that cholesteryl esters are present in cell membranes and some other biological systems, including human tear lipids. Therefore, an investigation into the effect of the lipid monolayer composition on their interfacial properties may elucidate some of the fundamental reasons for the deficiencies in cell membranes and tear film functioning in vivo. The experimental results have shown that the molar ratio of the mixture plays a crucial role in the modulation of the Langmuir film properties. The condensing effects of the cholesterol and the interactions between the lipids in the monolayer were the main factors altering the monolayer response to dilatational deformation. The modification of the mixture compositions leads to significant changes in the Langmuir films and the mechanical performance, altering the ability of the monolayer to reduce the surface tension and the viscoelastic properties of the monolayers. This suggests that subtle modifications of the biomembrane composition may significantly alter its physiological function.
    Keywords Langmuir monolayers ; dilational rheology ; cholesterol ; cholesteryl stearate ; Chemistry ; QD1-999
    Subject code 540
    Language English
    Publishing date 2021-05-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Adsorption of Mixtures of a Pegylated Lipid with Anionic and Zwitterionic Surfactants at Solid/Liquid

    Sara Llamas / Eduardo Guzmán / Francisco Ortega / Ramón G. Rubio

    Colloids and Interfaces, Vol 4, Iss 47, p

    2020  Volume 47

    Abstract: This work explores the association of a pegylated lipid (DSPE-PEG) with different anionic and zwitterionic surfactants (pseudo-binary and pseudo-ternary polymer+ surfactant mixtures), and the adsorption of the polymer + surfactant aggregates onto ... ...

    Abstract This work explores the association of a pegylated lipid (DSPE-PEG) with different anionic and zwitterionic surfactants (pseudo-binary and pseudo-ternary polymer+ surfactant mixtures), and the adsorption of the polymer + surfactant aggregates onto negatively charged surfaces, with a surface charge density similar to that existing on the damaged hair epicuticle. Dynamic light scattering and zeta potential measurements shows that, in solution, the polymer + surfactant association results from an intricate balance between electrostatic and hydrophobic interactions, which leads to the formation of at least two different types of micellar-like polymer + surfactant aggregates. The structure and physicochemical properties of such aggregates were found strongly dependent on the specific nature and concentration of the surfactant. The adsorption of the polymer + surfactant aggregates onto negatively charged surface was studied using a set of surface-sensitive techniques (quartz crystal microbalance with dissipation monitoring, ellipsometry and Atomic Force Microscopy), which allows obtaining information about the adsorbed amount, the water content of the layers and the topography of the obtained films. Ion-dipole interactions between the negative charges of the surface and the oxyethylene groups of the polymer + surfactant aggregates appear as the main driving force of the deposition process. This is strongly dependent on the surfactant nature and its concentration, with the impact of the latter on the adsorption being especially critical when anionic surfactant are incorporated within the aggregates. This study opens important perspectives for modulating the deposition of a poorly interacting polymer onto negatively charged surfaces, which can impact in the fabrication on different aspects with technological and industrial interest.
    Keywords adsorption ; polymer ; surfactants ; pegylated lipid ; solid surfaces ; complexes ; Chemistry ; QD1-999
    Subject code 660
    Language English
    Publishing date 2020-10-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Performance of Oleic Acid and Soybean Oil in the Preparation of Oil-in-Water Microemulsions for Encapsulating a Highly Hydrophobic Molecule

    Laura Fernández-Peña / Boutaina Z. El Mojahid / Eduardo Guzmán / Francisco Ortega / Ramón G. Rubio

    Colloids and Interfaces, Vol 5, Iss 50, p

    2021  Volume 50

    Abstract: This work analyzes the dispersion of a highly hydrophobic molecule, (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide (ceramide-like molecule), with cosmetic and pharmaceutical interest, by exploiting oil-in-water microemulsions. Two different oils, ... ...

    Abstract This work analyzes the dispersion of a highly hydrophobic molecule, (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide (ceramide-like molecule), with cosmetic and pharmaceutical interest, by exploiting oil-in-water microemulsions. Two different oils, oleic acid and soybean oil, were tested as an oil phase while mixtures of laureth-5-carboxylic acid (Akypo) and 2-propanol were used for the stabilization of the dispersions. This allowed us to obtain stable aqueous-based formulations with a relatively reduced content of oily phase (around 3% w/w ), that may enhance the bioavailability of this molecule by its solubilization in nanometric oil droplets (with a size range of 30–80 nm), that allow the incorporation of a ceramide-like molecule of up to 3% w/w , to remain stable for more than a year. The nanometric size of the droplet containing the active ingredient and the stability of the formulations provide the basis for evaluating the efficiency of microemulsions in preparing formulations to enhance the distribution and availability of ceramide-like molecules, helping to reach targets in cosmetic and pharmaceutical formulations.
    Keywords ceramide ; colloidal carriers ; cosmetics ; drug delivery ; formulations ; pharmaceutical products ; Chemistry ; QD1-999
    Subject code 660
    Language English
    Publishing date 2021-11-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Polyelectrolyte Multilayers on Soft Colloidal Nanosurfaces

    Ana Mateos-Maroto / Irene Abelenda-Núñez / Francisco Ortega / Ramón G. Rubio / Eduardo Guzmán

    Polymers, Vol 13, Iss 1221, p

    A New Life for the Layer-By-Layer Method

    2021  Volume 1221

    Abstract: The Layer-by-Layer (LbL) method is a well-established method for the assembly of nanomaterials with controlled structure and functionality through the alternate deposition onto a template of two mutual interacting molecules, e.g., polyelectrolytes ... ...

    Abstract The Layer-by-Layer (LbL) method is a well-established method for the assembly of nanomaterials with controlled structure and functionality through the alternate deposition onto a template of two mutual interacting molecules, e.g., polyelectrolytes bearing opposite charge. The current development of this methodology has allowed the fabrication of a broad range of systems by assembling different types of molecules onto substrates with different chemical nature, size, or shape, resulting in numerous applications for LbL systems. In particular, the use of soft colloidal nanosurfaces, including nanogels, vesicles, liposomes, micelles, and emulsion droplets as a template for the assembly of LbL materials has undergone a significant growth in recent years due to their potential impact on the design of platforms for the encapsulation and controlled release of active molecules. This review proposes an analysis of some of the current trends on the fabrication of LbL materials using soft colloidal nanosurfaces, including liposomes, emulsion droplets, or even cells, as templates. Furthermore, some fundamental aspects related to deposition methodologies commonly used for fabricating LbL materials on colloidal templates together with the most fundamental physicochemical aspects involved in the assembly of LbL materials will also be discussed.
    Keywords layer by layer ; polyelectrolytes ; electrostatic self-assembly ; multilayers ; soft colloids ; nanosurfaces ; Organic chemistry ; QD241-441
    Subject code 620
    Language English
    Publishing date 2021-04-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Nanoemulsions for the Encapsulation of Hydrophobic Actives

    Eduardo Guzmán / Laura Fernández-Peña / Lorenzo Rossi / Mathieu Bouvier / Francisco Ortega / Ramón G. Rubio

    Cosmetics, Vol 8, Iss 45, p

    2021  Volume 45

    Abstract: This work analyzes the dispersion of two highly hydrophobic actives, (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide (ceramidelike molecule) and 2,6-diamino-4-(piperidin-1-yl)pyrimidine 1-oxide (minoxidil), using oil-in-water nanoemulsions with the ...

    Abstract This work analyzes the dispersion of two highly hydrophobic actives, (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide (ceramidelike molecule) and 2,6-diamino-4-(piperidin-1-yl)pyrimidine 1-oxide (minoxidil), using oil-in-water nanoemulsions with the aim of preparing stable and safe aqueous-based formulations that can be exploited for enhancing the penetration of active compounds through cosmetic substrates. Stable nanoemulsions with a droplet size in the nanometric range (around 200 nm) and a negative surface charge were prepared. It was possible to prepare formulations containing up to 2 w/w% of ceramide-like molecules and more than 10 w/w% of minoxidil incorporated within the oil droplets. This emulsions evidenced a good long-term stability, without any apparent modification for several weeks. Despite the fact that this work is limited to optimize the incorporation of the actives within the nanoemulsion-like formulations, it demonstrated that nanoemulsions should be considered as a very promising tool for enhancing the distribution and availability of hydrophobic molecules with technological interest.
    Keywords encapsulation ; oil-in-water nanoemulsions ; hydrophobic substance ; ceramide ; minoxidil ; Chemistry ; QD1-999
    Subject code 540
    Language English
    Publishing date 2021-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Pattern Formation upon Evaporation of Sessile Droplets of Polyelectrolyte/Surfactant Mixtures on Silicon Wafers

    Lionel Perrin / Andrew Akanno / Eduardo Guzman / Francisco Ortega / Ramon G. Rubio

    International Journal of Molecular Sciences, Vol 22, Iss 7953, p

    2021  Volume 7953

    Abstract: The formation of coffee-ring deposits upon evaporation of sessile droplets containing mixtures of poly(diallyldimethylammonium chloride) (PDADMAC) and two different anionic surfactants were studied. This process is driven by the Marangoni stresses ... ...

    Abstract The formation of coffee-ring deposits upon evaporation of sessile droplets containing mixtures of poly(diallyldimethylammonium chloride) (PDADMAC) and two different anionic surfactants were studied. This process is driven by the Marangoni stresses resulting from the formation of surface-active polyelectrolyte–surfactant complexes in solution and the salt arising from the release of counterions. The morphologies of the deposits appear to be dependent on the surfactant concentration, independent of their chemical nature, and consist of a peripheral coffee ring composed of PDADMAC and PDADMAC–surfactant complexes, and a secondary region of dendrite-like structures of pure NaCl at the interior of the residue formed at the end of the evaporation. This is compatible with a hydrodynamic flow associated with the Marangoni stress from the apex of the drop to the three-phase contact line for those cases in which the concentration of the complexes dominates the surface tension, whereas it is reversed when most of the PDADMAC and the complexes have been deposited at the rim and the bulk contains mainly salt.
    Keywords evaporation ; salt ; surfactant ; sessile droplet ; patterning ; Marangoni flow ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 540
    Language English
    Publishing date 2021-07-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Polyelectrolyte Multilayered Capsules as Biomedical Tools

    Ana Mateos-Maroto / Laura Fernández-Peña / Irene Abelenda-Núñez / Francisco Ortega / Ramón G. Rubio / Eduardo Guzmán

    Polymers, Vol 14, Iss 479, p

    2022  Volume 479

    Abstract: Polyelectrolyte multilayered capsules (PEMUCs) obtained using the Layer-by-Layer (LbL) method have become powerful tools for different biomedical applications, which include drug delivery, theranosis or biosensing. However, the exploitation of PEMUCs in ... ...

    Abstract Polyelectrolyte multilayered capsules (PEMUCs) obtained using the Layer-by-Layer (LbL) method have become powerful tools for different biomedical applications, which include drug delivery, theranosis or biosensing. However, the exploitation of PEMUCs in the biomedical field requires a deep understanding of the most fundamental bases underlying their assembly processes, and the control of their properties to fabricate novel materials with optimized ability for specific targeting and therapeutic capacity. This review presents an updated perspective on the multiple avenues opened for the application of PEMUCs to the biomedical field, aiming to highlight some of the most important advantages offered by the LbL method for the fabrication of platforms for their use in the detection and treatment of different diseases.
    Keywords biomedical ; capsules ; drug delivery ; layer-by-layer ; multilayers ; polyelectrolyte ; Organic chemistry ; QD241-441
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: Oil in Water Nanoemulsions Loaded with Tebuconazole for Populus Wood Protection against White- and Brown-Rot Fungi

    Alejandro Lucia / Mónica Murace / Gastón Sartor / Gabriel Keil / Ricardo Cámera / Ramón G. Rubio / Eduardo Guzmán

    Forests, Vol 12, Iss 1234, p

    2021  Volume 1234

    Abstract: Eugenol in water nanoemulsions loaded with tebuconazole appear as a very promising alternative formulations for wood protection against xylophagous fungi that are the main species responsible for different rots in wood structures. The dispersions as ... ...

    Abstract Eugenol in water nanoemulsions loaded with tebuconazole appear as a very promising alternative formulations for wood protection against xylophagous fungi that are the main species responsible for different rots in wood structures. The dispersions as prepared and upon dilution (impregnation mixtures) were characterized by the apparent hydrodynamic diameter distribution of the oil droplets loaded with tebuconazole and their long-term stability. The impregnation mixtures were applied on wood of Populus canadensis I-214 clone by using a pressure-vacuum system, and the effectiveness against fungal degradation by Gloeophyllum sepiarium and Pycnoporus sanguineus fungi was determined. The retention of tebuconazole in wood was about 40% of the amount contained in the impregnation mixtures. The results showed that the impregnation process leads to a long-term antifungal protection to the wood, with the mass loss after 16 weeks being reduced more than 10 times in relation to the control (untreated poplar wood) and the reference wood (untreated beech wood).
    Keywords emulsions ; eugenol ; eco-sustainable ; xylophagous fungi ; nanocarriers ; tebuconazole ; Plant ecology ; QK900-989
    Language English
    Publishing date 2021-09-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top