LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 92

Search options

  1. Article ; Online: Structure and function of capsid protein in flavivirus infection and its applications in the development of vaccines and therapeutics

    Xingcui Zhang / Yanting Zhang / Renyong Jia / Mingshu Wang / Zhongqiong Yin / Anchun Cheng

    Veterinary Research, Vol 52, Iss 1, Pp 1-

    2021  Volume 14

    Abstract: Abstract Flaviviruses are enveloped single positive-stranded RNA viruses. The capsid (C), a structural protein of flavivirus, is dimeric and alpha-helical, with several special structural and functional features. The functions of the C protein go far ... ...

    Abstract Abstract Flaviviruses are enveloped single positive-stranded RNA viruses. The capsid (C), a structural protein of flavivirus, is dimeric and alpha-helical, with several special structural and functional features. The functions of the C protein go far beyond a structural role in virions. It is not only responsible for encapsidation to protect the viral RNA but also able to interact with various host proteins to promote virus proliferation. Therefore, the C protein plays an important role in infected host cells and the viral life cycle. Flaviviruses have been shown to affect the health of humans and animals. Thus, there is an urgent need to effectively control flavivirus infections. The structure of the flavivirus virion has been determined, but there is relatively little information about the function of the C protein. Hence, a greater understanding of the role of the C protein in viral infections will help to discover novel antiviral strategies and provide a promising starting point for the further development of flavivirus vaccines or therapeutics.
    Keywords Flavivirus ; capsid protein ; ecapsidation ; vaccine ; therapeutic ; Veterinary medicine ; SF600-1100
    Subject code 570
    Language English
    Publishing date 2021-06-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Characteristics of the a sequence of the duck Plague virus genome and specific cleavage of the viral genome based on the a sequence

    Qiao Yang / Yaya Feng / Yuanxin Zhang / Mingshu Wang / Renyong Jia / Dekang Zhu / Shun Chen / Mafeng Liu / Xinxin Zhao / Ying Wu / Shaqiu Zhang / Bin Tian / Xumin Ou / Sai Mao / Juan Huang / Qun Gao / Di Sun / Zhen Wu / Yu He /
    Ling Zhang / Yanling Yu / Anchun Cheng

    Veterinary Research, Vol 55, Iss 1, Pp 1-

    2024  Volume 11

    Abstract: Abstract During the replication process, the herpesvirus genome forms the head-to-tail linked concatemeric genome, which is then cleaved and packaged into the capsid. The cleavage and packing process is carried out by the terminase complex, which ... ...

    Abstract Abstract During the replication process, the herpesvirus genome forms the head-to-tail linked concatemeric genome, which is then cleaved and packaged into the capsid. The cleavage and packing process is carried out by the terminase complex, which specifically recognizes and cleaves the concatemeric genome. This process is governed by a cis-acting sequence in the genome, named the a sequence. The a sequence and genome cleavage have been described in some herpesviruses, but it remains unclear in duck plague virus. In this study, we analysed the location, composition, and conservation of a sequence in the duck plague virus genome. The structure of the DPV genome has an a sequence of (DR4)m-(DR2)n-pac1-S termini (32 bp)-L termini (32 bp)-pac2, and the length is 841 bp. Direct repeat (DR) sequences are conserved in different DPV strains, but the number of DR copies is inconsistent. Additionally, the typical DR1 sequence was not found in the DPV a sequence. The Pac1 and pac2 motifs are relatively conserved between DPV and other herpesviruses. Cleavage of the DPV concatemeric genome was detected, and the results showed that the DPV genome can form a concatemer and is cleaved into a monomer at a specific site. We also established a sensitive method, TaqMan dual qRT‒PCR, to analyse genome cleavage. The ratio of concatemer to total viral genome was decreased during the replication process. These results will be critical for understanding the process of DPV genome cleavage, and the application of TaqMan dual qRT‒PCR will greatly facilitate more in-depth research.
    Keywords Duck plague virus ; a sequence ; cleavage and packaging of viral genome ; TaqMan dual qRT‒PCR ; Veterinary medicine ; SF600-1100
    Subject code 570
    Language English
    Publishing date 2024-01-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: DHAV 3CD targets IRF7 and RIG-I proteins to block the type I interferon upstream signaling pathway

    Xiaoyan Xia / Anchun Cheng / Mingshu Wang / Xumin Ou / Di Sun / Shaqiu Zhang / Sai Mao / Qiao Yang / Bin Tian / Ying Wu / Juan Huang / Qun Gao / Renyong Jia / Shun Chen / Mafeng Liu / Xin-Xin Zhao / Dekang Zhu / Yanling Yu / Ling Zhang

    Veterinary Research, Vol 54, Iss 1, Pp 1-

    2023  Volume 15

    Abstract: Abstract Duck hepatitis A virus type 1 (DHAV-1) is an acute, highly lethal infectious agent that infects ducklings and causes up to 95% mortality in ducklings up to 1 week of age, posing a significant economic threat to the duck farming industry. ... ...

    Abstract Abstract Duck hepatitis A virus type 1 (DHAV-1) is an acute, highly lethal infectious agent that infects ducklings and causes up to 95% mortality in ducklings up to 1 week of age, posing a significant economic threat to the duck farming industry. Previous studies have found that the proteolytic enzyme 3 C encoded by DHAV-1 can inhibit the IRF7 protein from blocking the upstream signaling pathway of the type I interferon to promote viral replication. However, there are still few studies on the mechanism of DHAV-1 in immune evasion. Here, we demonstrate that the DHAV-1 3CD protein can interact with IRF7 protein and reduce IRF7 protein expression without directly affecting IRF7 protein nuclear translocation. Further studies showed that the 3CD protein could reduce the expression of RIG-I protein without affecting its transcription level. Furthermore, we found that the 3CD protein interacted with the N-terminal structural domain of RIG-I protein, interfered with the interaction between RIG-I and MAVS, and degraded RIG-I protein through the proteasomal degradation pathway, thereby inhibiting its mediated antiviral innate immunity to promote DHAV-1 replication. These data suggest a novel immune evasion mechanism of DHAV-1 mediated by the 3CD protein, and the results of this experiment are expected to improve the understanding of the biological functions of the viral precursor protein and provide scientific data to elucidate the mechanism of DHAV-1 infection and pathogenesis.
    Keywords Duck hepatitis a virus ; 3CD protein ; interferon regulatory factor 7 ; retinoic acid-inducible gene I ; interaction ; immune evasion ; Veterinary medicine ; SF600-1100
    Subject code 570
    Language English
    Publishing date 2023-01-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Anticoccidial Effect of Herbal Powder “Shi Ying Zi” in Chickens Infected with Eimeria tenella

    Xu Song / Yunhe Li / Shufan Chen / Renyong Jia / Yongyuan Huang / Yuanfeng Zou / Lixia Li / Xinxin Zhao / Zhongqiong Yin

    Animals, Vol 10, Iss 1484, p

    2020  Volume 1484

    Abstract: Coccidiosis is one of the most economically important diseases affecting the poultry industry. Currently, anticoccidial drugs used in veterinary clinics show many deficiencies, and new control measures are urgently needed. This study presents an ... ...

    Abstract Coccidiosis is one of the most economically important diseases affecting the poultry industry. Currently, anticoccidial drugs used in veterinary clinics show many deficiencies, and new control measures are urgently needed. This study presents an anticoccidial herbal powder “Shi Yin Zi”, which consists of Cnidium monnieri (L.) Cuss, Taraxacum mongolicum Hand.-Mazz., and sodium chloride. In chickens infected with Eimeria tenella , supplementation with “Shi Yin Zi” powder for 3 d prior to infection or treatment with “Shi Yin Zi” powder after infection could improve the survival rate and relative growth rate and alleviate the pathological changes in the cecum, liver, and kidney. “Shi Yin Zi” powder could recover the levels of alanine aminotransferase, creatinine, albumin, and triglycerides in serum. The hemorrhage occurrence and total number of oocysts in feces were reduced. The anti-coccidial indexes reached 165 for the prophylactic effect and 144 for the therapeutic effect. The anti-coccidial effects were equal to positive controls (monensin and sulfamlopyrazine). These results suggest that “Shi Ying Zi” powder possesses a potent anticoccidial effect and exhibits the potential to control E. tenella infection.
    Keywords anticoccidial drug ; coccidiosis ; “Shi Yin Zi” powder ; Veterinary medicine ; SF600-1100 ; Zoology ; QL1-991
    Subject code 630
    Language English
    Publishing date 2020-08-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Tannins extract from Galla Chinensis can protect mice from infection by Enterotoxigenic Escherichia coli O101

    Xu Song / Yi Yang / Junzhi Li / Mengxue He / Yuanfeng Zou / Renyong Jia / Lixia Li / Juan Hang / Min Cui / Lu Bai / Zhongqiong Yin

    BMC Complementary Medicine and Therapies, Vol 21, Iss 1, Pp 1-

    2021  Volume 10

    Abstract: Abstract Background Enterotoxigenic Escherichia coli (ETEC) is classically associated with acute secretory diarrhea, which induces 2 million people death in developing countries over a year, predominantly children in the first years of life. Previously, ... ...

    Abstract Abstract Background Enterotoxigenic Escherichia coli (ETEC) is classically associated with acute secretory diarrhea, which induces 2 million people death in developing countries over a year, predominantly children in the first years of life. Previously, tannins (47.75%) were extracted from Galla Chinensis and prepared as Galla Chinensis oral solution (GOS) which showed significant antidiarrheal activity in a castor oil-induced diarrhea in mice. Whether the tannins extract were also effective in treatment of ETEC-induced diarrhea was determined in this study. Methods Mice were randomly divided into 6 groups (n = 22). The mice in the normal and untreated groups were given normal saline. Three GOS-treated groups were received different concentrations of GOS (5, 10 and 15%, respectively) at a dose of 10 mL/kg. Mice in the positive control group were fed with loperamide (10 mg/kg). The treatment with GOS started 3 days before infection with ETEC and continued for 4 consecutive days after infection. On day 3, mice were all infected with one dose of LD50 of ETEC, except those in the normal group. Survival of mice was observed daily and recorded throughout the study. On days 4 and 7, samples were collected from 6 mice in each group. Results GOS could increase the survival rate up to 75%, while in the untreated group it is 43.75%. The body weights of mice treated with 15% GOS were significantly increased on day 7 in comparison with the untreated group and the normal group. GOS-treatment recovered the small intestine coefficient enhanced by ETEC-infection. The diarrhea index of mice treated with GOS was significantly decreased. GOS increased the levels of IgG and sIgA in the terminal ileum and decreased the levels of pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1β, IL-6 and IL-8) in serum. GOS could increase the amount of intestinal probiotics, Lactobacilli and Bifidobacteria. GOS could alleviate colon lesions induced by ETEC-infection. GOS showed higher potency than loperamide. Conclusions GOS could be a promising drug candidate for treating ETEC infections.
    Keywords Galla Chinensis ; Enterotoxigenic Escherichia coli ; Diarrhea ; Tannins ; Other systems of medicine ; RZ201-999
    Subject code 630
    Language English
    Publishing date 2021-03-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Immunogenicity and protection of a Pasteurella multocida strain with a truncated lipopolysaccharide outer core in ducks

    Xinxin Zhao / Fuxiang Yang / Hui Shen / Yi Liao / Dekang Zhu / Mingshu Wang / Renyong Jia / Shun Chen / Mafeng Liu / Qiao Yang / Ying Wu / Shaqiu Zhang / Juan Huang / Xumin Ou / Sai Mao / Qun Gao / Di Sun / Bin Tian / Anchun Cheng

    Veterinary Research, Vol 53, Iss 1, Pp 1-

    2022  Volume 12

    Abstract: Abstract Pasteurella multocida infection frequently causes fowl cholera outbreaks, leading to huge economic losses to the poultry industry worldwide. This study developed a novel live attenuated P. multocida vaccine strain for ducks named PMZ2 with ... ...

    Abstract Abstract Pasteurella multocida infection frequently causes fowl cholera outbreaks, leading to huge economic losses to the poultry industry worldwide. This study developed a novel live attenuated P. multocida vaccine strain for ducks named PMZ2 with deletion of the gatA gene and first four bases of the hptE gene, both of which are required for the synthesis of the lipopolysaccharide (LPS) outer core. PMZ2 produced a truncated LPS phenotype and was highly attenuated in ducks with a > 105-fold higher LD50 than the wild-type strain. PMZ2 colonized the blood and organs, including the spleen, liver and lung, at remarkably reduced levels, and its high dose of oral infection did not cause adverse effects on body temperatures and body weights in ducks. To evaluate the vaccine efficacy of the mutant, ducklings were inoculated orally or intranasally with PMZ2 or PBS twice and subsequently subjected to a lethal challenge. Compared with the PBS control, PMZ2 immunization stimulated significantly elevated serum IgG, bile IgA and tracheal IgA responses, especially after the boost immunization in both the oral and intranasal groups, and the induced serum had significant bactericidal effects against the wild-type strain. Furthermore, the two PMZ2 immunization groups exhibited alleviated tissue lesions and significantly decreased bacterial loads in the blood and organs compared with the PBS group post-challenge. All the ducks in the PMZ2 oral and intranasal groups survived the challenge, while 70% of ducks in the PBS group succumbed to the challenge. Thus, the P. multocida mutant with mutation of the gatA gene and part of the hptE gene proved to be an effective live attenuated vaccine candidate for prevention of fowl cholera in ducks.
    Keywords Pasteurella multocida ; LPS ; gatA ; hptE ; virulence ; live attenuated vaccine ; Veterinary medicine ; SF600-1100
    Subject code 630
    Language English
    Publishing date 2022-03-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: The antiviral activity of kaempferol against pseudorabies virus in mice

    Lixia Li / Rui Wang / Huaiyue Hu / Xu Chen / Zhongqiong Yin / Xiaoxia Liang / Changliang He / Lizi Yin / Gang Ye / Yuanfeng Zou / Guizhou Yue / Huaqiao Tang / Renyong Jia / Xu Song

    BMC Veterinary Research, Vol 17, Iss 1, Pp 1-

    2021  Volume 14

    Abstract: Abstract Background Pseudorabies virus (PRV), a member of the Alphaherpesviruses, is one of the most important pathogens that harm the global pig industry. Accumulated evidence indicated that PRV could infect humans under certain circumstances, inducing ... ...

    Abstract Abstract Background Pseudorabies virus (PRV), a member of the Alphaherpesviruses, is one of the most important pathogens that harm the global pig industry. Accumulated evidence indicated that PRV could infect humans under certain circumstances, inducing severe clinical symptoms such as acute human encephalitis. Currently, there are no antiviral drugs to treat PRV infections, and vaccines available only for swine could not provide full protection. Thus, new control measures are urgently needed. Results In the present study, kaempferol exhibited anti-PRV activity in mice through improving survival rate by 22.22 %, which was higher than acyclovir (Positive control) with the survival rate of 16.67 % at 6 days post infection (dpi); meanwhile, the survival rate was 0 % at 6 dpi in the infected-untreated group. Kaempferol could inhibit the virus replication in the brain, lung, kidney, heart and spleen, especially the viral gene copies were reduced by over 700-fold in the brain, which was further confirmed by immunohistochemical examination. The pathogenic changes induced by PRV infection in these organs were also alleviated. The transcription of the only immediate-early gene IE180 in the brain was significantly inhibited by kaempferol, leading to the decreased transcriptional levels of the early genes (EPO and TK). The expression of latency-associated transcript (LAT) was also inhibited in the brain, which suggested that kaempferol could inhibit PRV latency. Kaempferol-treatment could induce higher levels of IL-1β, IL-4, IL-6, TNF-α and IFN-γ in the serum at 3 dpi which were then declined to normal levels at 5 dpi. Conclusions These results suggested that kaempferol was expected to be a new alternative control measure for PRV infection.
    Keywords Kaempferol ; Pseudorabies virus ; Antiviral activity ; Veterinary medicine ; SF600-1100
    Subject code 570
    Language English
    Publishing date 2021-07-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Duck plague virus UL41 protein inhibits RIG-I/MDA5-mediated duck IFN-β production via mRNA degradation activity

    Tianqiong He / Mingshu Wang / Anchun Cheng / Qiao Yang / Ying Wu / Renyong Jia / Shun Chen / Dekang Zhu / Mafeng Liu / Xinxin Zhao / Shaqiu Zhang / Juan Huang / Bin Tian / Xumin Ou / Sai Mao / Di Sun / Qun Gao / Yanling Yu / Ling Zhang /
    Yunya Liu

    Veterinary Research, Vol 53, Iss 1, Pp 1-

    2022  Volume 13

    Abstract: Abstract Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are cytosolic pattern recognition receptors that initiate innate antiviral immunity. Recent reports found that duck RLRs significantly restrict duck plague virus (DPV) infection. ... ...

    Abstract Abstract Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are cytosolic pattern recognition receptors that initiate innate antiviral immunity. Recent reports found that duck RLRs significantly restrict duck plague virus (DPV) infection. However, the molecular mechanism by which DPV evades immune responses is unknown. In this study, we first found that the DPV UL41 protein inhibited duck interferon-β (IFN-β) production mediated by RIG-I and melanoma differentiation-associated gene 5 (MDA5) by broadly downregulating the mRNA levels of important adaptor molecules, such as RIG-I, MDA5, mitochondrial antiviral signalling protein (MAVS), stimulator of interferon gene (STING), TANK-binding kinase 1 (TBK1), and interferon regulatory factor (IRF) 7. The conserved sites of the UL41 protein, E229, D231, and D232, were responsible for this activity. Furthermore, the DPV CHv-BAC-ΔUL41 mutant virus induced more duck IFN-β and IFN-stimulated genes (Mx, OASL) production in duck embryo fibroblasts (DEFs) than DPV CHv-BAC parent virus. Our findings provide insights into the molecular mechanism underlying DPV immune evasion.
    Keywords DPV ; UL41 protein ; IFN-β ; RLRs ; mRNA ; innate immune response ; Veterinary medicine ; SF600-1100
    Subject code 570
    Language English
    Publishing date 2022-03-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: RNA-Seq analysis of duck embryo fibroblast cells gene expression during duck Tembusu virus infection

    Yuhong Pan / Xuedong Wu / Wenjun Cai / Anchun Cheng / Mingshu Wang / Shun Chen / Juan Huang / Qiao Yang / Ying Wu / Di Sun / Sai Mao / Dekang Zhu / Mafeng Liu / Xinxin Zhao / Shaqiu Zhang / Qun Gao / Xumin Ou / Bin Tian / Zhongqiong Yin /
    Renyong Jia

    Veterinary Research, Vol 53, Iss 1, Pp 1-

    2022  Volume 12

    Abstract: Abstract Duck Tembusu virus (DTMUV), a member of the family Flaviviridae and an economically important pathogen with a broad host range, leads to markedly decreased egg production. However, the molecular mechanism underlying the host-DTMUV interaction ... ...

    Abstract Abstract Duck Tembusu virus (DTMUV), a member of the family Flaviviridae and an economically important pathogen with a broad host range, leads to markedly decreased egg production. However, the molecular mechanism underlying the host-DTMUV interaction remains unclear. Here, we performed high-throughput RNA sequencing (RNA-Seq) to study the dynamic changes in host gene expression at 12, 24, 36, 48 and 60 h post-infection (hpi) in duck embryo fibroblasts (DEF) infected with DTMUV. A total of 3129 differentially expressed genes (DEG) were identified after DTMUV infection. Gene Ontology (GO) category and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that these DEG were associated with multiple biological functions, including signal transduction, host immunity, virus infection, cell apoptosis, cell proliferation, and pathogenicity-related and metabolic process signaling pathways. This study analyzed viral infection and host immunity induced by DTMUV infection from a novel perspective, and the results provide valuable information regarding the mechanisms underlying host-DTMUV interactions, which will prove useful for the future development of antiviral drugs or vaccines for poultry, thus benefiting the entire poultry industry.
    Keywords RNA-seq ; duck Tembusu virus ; duck embryo fibroblast cells ; virus infection ; immune responses ; Veterinary medicine ; SF600-1100
    Language English
    Publishing date 2022-05-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article: Influence of sulfadiazine on anaerobic fermentation of waste activated sludge for volatile fatty acids production: Focusing on microbial responses

    Xie, Jing / Feng Wang / Haiqing Dong / Leiyu Feng / Qi Zhou / Renyong Jia / Xu Duan / Yuanyuan Yan

    Chemosphere. 2019 Mar., v. 219

    2019  

    Abstract: Extensive studies on anaerobic fermentation of waste activated sludge (WAS) for volatile fatty acids (VFAs) production focused on the effects of operating parameters and pretreatment methods, and little information is available for those of organic ... ...

    Abstract Extensive studies on anaerobic fermentation of waste activated sludge (WAS) for volatile fatty acids (VFAs) production focused on the effects of operating parameters and pretreatment methods, and little information is available for those of organic pollutants which were absorbed on sludge. The influence of sulfadiazine (SDZ), a typical antibiotic pollutant in WAS, on VFAs production during anaerobic fermentation was investigated in this study. The accumulation of VFAs was remarkably affected in the presence of SDZ. When the content of SDZ was 50 mg per kilogram dry sludge the concentration of VFAs from sludge was 2032.8 mg COD/L, much higher than that of control (1540.2 mg COD/L). Mechanism investigation revealed that the content of extracellular polymeric substances (EPS) from sludge was increased due to the presence of SDZ, which provided more substrates, i.e., protein and carbohydrate, and created a favorable environment for anaerobes. The hydrolysis and acidification of WAS were stimulated by SDZ, and the functional microorganisms were advantageous to VFAs production. The activities of protease, α-glucosidase and acetate kinase were promoted when SDZ occurred, which were beneficial for hydrolysis and acidification. The effect of SDZ on pure strains further confirmed that the formation of VFAs during anaerobic fermentation was stimulated by SDZ.
    Keywords acetate kinase ; acidification ; activated sludge ; alpha-glucosidase ; anaerobes ; antibiotics ; carbohydrates ; chemical oxygen demand ; enzyme activity ; fermentation ; hydrolysis ; microorganisms ; pollutants ; proteinases ; sulfadiazine ; volatile fatty acids
    Language English
    Dates of publication 2019-03
    Size p. 305-312.
    Publishing place Elsevier Ltd
    Document type Article
    ZDB-ID 120089-6
    ISSN 1879-1298 ; 0045-6535 ; 0366-7111
    ISSN (online) 1879-1298
    ISSN 0045-6535 ; 0366-7111
    DOI 10.1016/j.chemosphere.2018.12.015
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

To top