LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: Iron deficiency linked to altered bile acid metabolism promotes Helicobacter pylori–induced inflammation–driven gastric carcinogenesis

    Jennifer M. Noto / M. Blanca Piazuelo / Shailja C. Shah / Judith Romero-Gallo / Jessica L. Hart / Chao Di / James D. Carmichael / Alberto G. Delgado / Alese E. Halvorson / Robert A. Greevy / Lydia E. Wroblewski / Ayushi Sharma / Annabelle B. Newton / Margaret M. Allaman / Keith T. Wilson / M. Kay Washington / M. Wade Calcutt / Kevin L. Schey / Bethany P. Cummings /
    Charles R. Flynn / Joseph P. Zackular / Richard M. Peek Jr.

    The Journal of Clinical Investigation, Vol 132, Iss

    2022  Volume 10

    Abstract: Gastric carcinogenesis is mediated by complex interactions among Helicobacter pylori, host, and environmental factors. Here, we demonstrate that H. pylori augmented gastric injury in INS-GAS mice under iron-deficient conditions. Mechanistically, these ... ...

    Abstract Gastric carcinogenesis is mediated by complex interactions among Helicobacter pylori, host, and environmental factors. Here, we demonstrate that H. pylori augmented gastric injury in INS-GAS mice under iron-deficient conditions. Mechanistically, these phenotypes were not driven by alterations in the gastric microbiota; however, discovery-based and targeted metabolomics revealed that bile acids were significantly altered in H. pylori–infected mice with iron deficiency, with significant upregulation of deoxycholic acid (DCA), a carcinogenic bile acid. The severity of gastric injury was further augmented when H. pylori–infected mice were treated with DCA, and, in vitro, DCA increased translocation of the H. pylori oncoprotein CagA into host cells. Conversely, bile acid sequestration attenuated H. pylori–induced injury under conditions of iron deficiency. To translate these findings to human populations, we evaluated the association between bile acid sequestrant use and gastric cancer risk in a large human cohort. Among 416,885 individuals, a significant dose-dependent reduction in risk was associated with cumulative bile acid sequestrant use. Further, expression of the bile acid receptor transmembrane G protein–coupled bile acid receptor 5 (TGR5) paralleled the severity of carcinogenic lesions in humans. These data demonstrate that increased H. pylori–induced injury within the context of iron deficiency is tightly linked to altered bile acid metabolism, which may promote gastric carcinogenesis.
    Keywords Gastroenterology ; Infectious disease ; Medicine ; R
    Language English
    Publishing date 2022-05-01T00:00:00Z
    Publisher American Society for Clinical Investigation
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Helicobacter pylori genetic diversification in the Mongolian gerbil model

    Amber C. Beckett / John T. Loh / Abha Chopra / Shay Leary / Aung Soe Lin / Wyatt J. McDonnell / Beverly R.E.A. Dixon / Jennifer M. Noto / Dawn A. Israel / Richard M. Peek Jr / Simon Mallal / Holly M. Scott Algood / Timothy L. Cover

    PeerJ, Vol 6, p e

    2018  Volume 4803

    Abstract: Helicobacter pylori requires genetic agility to infect new hosts and establish long-term colonization of changing gastric environments. In this study, we analyzed H. pylori genetic adaptation in the Mongolian gerbil model. This model is of particular ... ...

    Abstract Helicobacter pylori requires genetic agility to infect new hosts and establish long-term colonization of changing gastric environments. In this study, we analyzed H. pylori genetic adaptation in the Mongolian gerbil model. This model is of particular interest because H. pylori-infected gerbils develop a high level of gastric inflammation and often develop gastric adenocarcinoma or gastric ulceration. We analyzed the whole genome sequences of H. pylori strains cultured from experimentally infected gerbils, in comparison to the genome sequence of the input strain. The mean annualized single nucleotide polymorphism (SNP) rate per site was 1.5e−5, which is similar to the rates detected previously in H. pylori-infected humans. Many of the mutations occurred within or upstream of genes associated with iron-related functions (fur, tonB1, fecA2, fecA3, and frpB3) or encoding outer membrane proteins (alpA, oipA, fecA2, fecA3, frpB3 and cagY). Most of the SNPs within coding regions (86%) were non-synonymous mutations. Several deletion or insertion mutations led to disruption of open reading frames, suggesting that the corresponding gene products are not required or are deleterious during chronic H. pylori colonization of the gerbil stomach. Five variants (three SNPs and two deletions) were detected in isolates from multiple animals, which suggests that these mutations conferred a selective advantage. One of the mutations (FurR88H) detected in isolates from multiple animals was previously shown to confer increased resistance to oxidative stress, and we now show that this SNP also confers a survival advantage when H. pylori is co-cultured with neutrophils. Collectively, these analyses allow the identification of mutations that are positively selected during H. pylori colonization of the gerbil model.
    Keywords Helicobacter pylori ; Quasispecies ; Mutation ; Genetic diversity ; Evolution ; Animal models ; Medicine ; R ; Biology (General) ; QH301-705.5
    Subject code 570
    Language English
    Publishing date 2018-05-01T00:00:00Z
    Publisher PeerJ Inc.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Effect of Helicobacter pylori cdrA on interleukin-8 secretions and nuclear factor kappa B activation

    Hiroaki Takeuchi / Ya-Nan Zhang / Dawn A Israel / Richard M Peek Jr / Mikio Kamioka / Hideo Yanai / Norihito Morimoto / Tetsuro Sugiura

    World Journal of Gastroenterology, Vol 18, Iss 5, Pp 425-

    2012  Volume 434

    Abstract: AIM: To investigate genetic diversity of Helicobacter pylori (H. pylori) cell division-related gene A (cdrA) and its effect on the host response. METHODS: Inactivation of H. pylori cdrA, which is involved in cell division and morphological elongation, ... ...

    Abstract AIM: To investigate genetic diversity of Helicobacter pylori (H. pylori) cell division-related gene A (cdrA) and its effect on the host response. METHODS: Inactivation of H. pylori cdrA, which is involved in cell division and morphological elongation, has a role in chronic persistent infections. Genetic property of H. pylori cdrA was evaluated using polymerase chain reaction and sequencing in 128 (77 American and 51 Japanese) clinical isolates obtained from 48 and 51 patients, respectively. Enzyme-linked immunosorbent assay was performed to measure interleukin-8 (IL-8) secretion with gastric biopsy specimens obtained from American patients colonized with cdrA-positive or -negative strains and AGS cells co-cultured with wild-type HPK5 (cdrA-positive) or its derivative HPKT510 (cdrA-disruptant). Furthermore, the cytotoxin-associated gene A (cagA) status (translocation and phosphorylation) and kinetics of transcription factors [nuclear factor-kappa B (NF-κB) and inhibition kappa B] were investigated in AGS cells co-cultured with HPK5, HPKT510 and its derivative HPK5CA (cagA-disruptant) by western blotting analysis with immunoprecipitation. RESULTS: Genetic diversity of the H. pylori cdrA gene demonstrated that the cdrA status segregated into two categories including four allele types, cdrA-positive (allele types;Iand II) and cdrA-negative (allele types; III and IV) categories, respectively. Almost all Japanese isolates were cdrA-positive (I: 7.8% and II: 90.2%), whereas 16.9% of American isolates were cdrA-positive (II) and 83.1% were cdrA-negative (III: 37.7% and IV: 45.5%), indicating extended diversity of cdrA in individual American isolates. Comparison of each isolate from different regions (antrum and corpus) in the stomach of 29 Americans revealed that cdrA status was identical in both isolates from different regions in 17 cases. However, 12 cases had a different cdrA allele and 6 of them exhibited a different cdrA category between two regions in the stomach. Furthermore, in 5 of the 6 cases possessing a different cdrA category, cdrA-negative isolate existed in the corpus, suggesting that cdrA-negative strain is more adaptable to colonization in the corpus. IL-8 secretions from AGS revealed that IL-8 levels induced by a cdrA-disrupted HPKT510 was significantly lower (P < 0.01) compared to wild-type HPK5: corresponding to 50%-60% of those of wild-type HPK5. These data coincided with in vivo data that an average value of IL-8 in biopsy specimens from cdrA-positive and cdrA-negative groups was 215.6 and 135.9 pg/mL, respectively. Western blotting analysis documented that HPKT510 had no effect on CagA translocation and phosphorylation, however, nuclear accumulation of NF-κB was lower by HPKT510 compared to HPK5. CONCLUSION: Colonization by a cdrA-negative or cdrA-dysfunctional strain resulted in decreased IL-8 production and repression of NF-κB, and hence, attenuate the host immunity leading to persistent infection.
    Keywords Helicobacter pylori cell division-related gene A ; Genetic diversity ; Host immune response ; Interleukin-8 secretion ; Nuclear factor kappa B ; Persistent infection ; Diseases of the digestive system. Gastroenterology ; RC799-869 ; Specialties of internal medicine ; RC581-951 ; Internal medicine ; RC31-1245 ; Medicine ; R ; DOAJ:Gastroenterology ; DOAJ:Medicine (General) ; DOAJ:Health Sciences
    Subject code 572
    Language English
    Publishing date 2012-01-01T00:00:00Z
    Publisher Baishideng Publishing Group Co., Limited
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top