LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 5 of total 5

Search options

  1. Article ; Online: Population structure and genome-wide association studies in bread wheat for phosphorus efficiency traits using 35 K Wheat Breeder’s Affymetrix array

    Preman R. Soumya / Amanda J. Burridge / Nisha Singh / Ritu Batra / Renu Pandey / Sanjay Kalia / Vandana Rai / Keith J. Edwards

    Scientific Reports, Vol 11, Iss 1, Pp 1-

    2021  Volume 17

    Abstract: Abstract Soil bioavailability of phosphorus (P) is a major concern for crop productivity worldwide. As phosphatic fertilizers are a non-renewable resource associated with economic and environmental issues so, the sustainable option is to develop P use ... ...

    Abstract Abstract Soil bioavailability of phosphorus (P) is a major concern for crop productivity worldwide. As phosphatic fertilizers are a non-renewable resource associated with economic and environmental issues so, the sustainable option is to develop P use efficient crop varieties. We phenotyped 82 diverse wheat (Triticum aestivum L.) accessions in soil and hydroponics at low and sufficient P. To identify the genic regions for P efficiency traits, the accessions were genotyped using the 35 K-SNP array and genome-wide association study (GWAS) was performed. The high-quality SNPs across the genomes were evenly distributed with polymorphic information content values varying between 0.090 and 0.375. Structure analysis revealed three subpopulations (C1, C2, C3) and the phenotypic responses of these subpopulations were assessed for P efficiency traits. The C2 subpopulation showed the highest genetic variance and heritability values for numerous agronomically important traits as well as strong correlation under both P levels in soil and hydroponics. GWAS revealed 78 marker-trait associations (MTAs) but only 35 MTAs passed Bonferroni Correction. A total of 297 candidate genes were identified for these MTAs and their annotation suggested their involvement in several biological process. Out of 35, nine (9) MTAs were controlling polygenic trait (two controlling four traits, one controlling three traits and six controlling two traits). These multi-trait MTAs (each controlling two or more than two correlated traits) could be utilized for improving bread wheat to tolerate low P stress through marker-assisted selection (MAS).
    Keywords Medicine ; R ; Science ; Q
    Subject code 500
    Language English
    Publishing date 2021-04-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Identification and characterization of SET domain family genes in bread wheat (Triticum aestivum L.)

    Ritu Batra / Tinku Gautam / Sunita Pal / Deepti Chaturvedi / Rakhi / Irfat Jan / Harindra Singh Balyan / Pushpendra Kumar Gupta

    Scientific Reports, Vol 10, Iss 1, Pp 1-

    2020  Volume 14

    Abstract: Abstract SET domain genes (SDGs) that are involved in histone methylation have been examined in many plant species, but have never been examined in bread wheat; the histone methylation caused due to SDGs is associated with regulation of gene expression ... ...

    Abstract Abstract SET domain genes (SDGs) that are involved in histone methylation have been examined in many plant species, but have never been examined in bread wheat; the histone methylation caused due to SDGs is associated with regulation of gene expression at the transcription level. We identified a total of 166 bread wheat TaSDGs, which carry some interesting features including the occurrence of tandem/interspersed duplications, SSRs (simple sequence repeats), transposable elements, lncRNAs and targets for miRNAs along their lengths and transcription factor binding sites (TFBS) in the promoter regions. Only 130 TaSDGs encoded proteins with complete SET domain, the remaining 36 proteins had truncated SET domain. The TaSDG encoded proteins were classified into six classes (I–V and VII). In silico expression analysis indicated relatively higher expression (FPKM > 20) of eight of the 130 TaSDGs in different tissues, and downregulation of 30 TaSDGs under heat and drought at the seedling stage. qRT-PCR was also conducted to validate the expression of seven genes at the seedling stage in pairs of contrasting genotypes in response to abiotic stresses (water and heat) and biotic stress (leaf rust). These genes were generally downregulated in response to the three stresses examined.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2020-09-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Meta-QTLs and candidate genes for stripe rust resistance in wheat

    Irfat Jan / Gautam Saripalli / Kuldeep Kumar / Anuj Kumar / Rakhi Singh / Ritu Batra / Pradeep Kumar Sharma / Harindra Singh Balyan / Pushpendra Kumar Gupta

    Scientific Reports, Vol 11, Iss 1, Pp 1-

    2021  Volume 13

    Abstract: Abstract In bread wheat, meta-QTL analysis was conducted using 353 QTLs that were available from earlier studies. When projected onto a dense consensus map comprising 76,753 markers, only 184 QTLs with the required information, could be utilized leading ... ...

    Abstract Abstract In bread wheat, meta-QTL analysis was conducted using 353 QTLs that were available from earlier studies. When projected onto a dense consensus map comprising 76,753 markers, only 184 QTLs with the required information, could be utilized leading to identification of 61 MQTLs spread over 18 of the 21 chromosomes (barring 5D, 6D and 7D). The range for mean R2 (PVE %) was 1.9% to 48.1%, and that of CI was 0.02 to 11.47 cM; these CIs also carried 37 Yr genes. Using these MQTLs, 385 candidate genes (CGs) were also identified. Out of these CGs, 241 encoded known R proteins and 120 showed differential expression due to stripe rust infection at the seedling stage; the remaining 24 CGs were common in the sense that they encoded R proteins as well as showed differential expression. The proteins encoded by CGs carried the following widely known domains: NBS-LRR domain, WRKY domains, ankyrin repeat domains, sugar transport domains, etc. Thirteen breeders’ MQTLs (PVE > 20%) including four pairs of closely linked MQTLs are recommended for use in wheat molecular breeding, for future studies to understand the molecular mechanism of stripe rust resistance and for gene cloning.
    Keywords Medicine ; R ; Science ; Q
    Subject code 572
    Language English
    Publishing date 2021-11-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: A study of CCD8 genes/proteins in seven monocots and eight dicots.

    Ritu Batra / Priyanka Agarwal / Sandhya Tyagi / Dinesh Kumar Saini / Vikas Kumar / Anuj Kumar / Sanjay Kumar / Harindra Singh Balyan / Renu Pandey / Pushpendra Kumar Gupta

    PLoS ONE, Vol 14, Iss 3, p e

    2019  Volume 0213531

    Abstract: In plants, the enzyme CCD8 (carotenoid cleavage dioxygenase 8) is involved in the synthesis of an important hormone, strigolactone, and therefore, plays an important role in controlling growth and development. Using cDNA and protein sequence derived from ...

    Abstract In plants, the enzyme CCD8 (carotenoid cleavage dioxygenase 8) is involved in the synthesis of an important hormone, strigolactone, and therefore, plays an important role in controlling growth and development. Using cDNA and protein sequence derived from the gene ZmCCD8 from maize, we identified putative orthologs of the gene encoding CCD8 in six other monocots and eight dicots; the sequence similarity ranged from 52-75.9% at the gene level and 60.9-93.7% at the protein level. The average length of the gene was ~3.3 kb (range: 2.08 to 3.98 kb), although the number of introns within the genes differed (4 or 5 in dicots and 3 or 4 in monocots, except in T. urartu with 6 introns). Several cis-acting regulatory elements were identified in the promoters of CCD8 genes, which are known to respond to biotic and abiotic stresses. The N-terminal end (up to ~70 amino acids) of CCD8 proteins was highly variable due to insertions, deletions and mismatches. The variation in genes and proteins were particularly conspicuous in T. urartu and Ae. tauschii among the monocots and A. thaliana and P. persica among the dicots. In CCD8 proteins, 12 motifs were also identified, of which 6 were novel; 4 of these novel motifs occurred in all the 15 species. The 3D structures of proteins had the characteristic features of the related enzyme apocarotenoid oxygenase (ACO) of Synechocystis (a representative of cyanobacteria). The results of qRT-PCR in wheat revealed that under phosphorous (P)-starved condition (relative to expression under optimum P used as control), the expression of TaCCD8 genes increased ~37 fold in root tissue of the cultivar C306 and ~33 fold in shoot tissue of the cultivar HUW468 (the two cultivars differed in their P-use efficiency). This suggested that expression of TaCCD8 genes is genotype-dependent and tissue-specific and is regulated under different levels of P supply.
    Keywords Medicine ; R ; Science ; Q
    Subject code 580
    Language English
    Publishing date 2019-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Genome-wide identification and characterization of gene family for RWP-RK transcription factors in wheat (Triticum aestivum L.).

    Anuj Kumar / Ritu Batra / Vijay Gahlaut / Tinku Gautam / Sanjay Kumar / Mansi Sharma / Sandhya Tyagi / Krishna Pal Singh / Harindra Singh Balyan / Renu Pandey / Pushpendra Kumar Gupta

    PLoS ONE, Vol 13, Iss 12, p e

    2018  Volume 0208409

    Abstract: RWP-RKs represent a small family of transcription factors (TFs) that are unique to plants and function particularly under conditions of nitrogen starvation. These RWP-RKs have been classified in two sub-families, NLPs (NIN-like proteins) and RKDs (RWP-RK ...

    Abstract RWP-RKs represent a small family of transcription factors (TFs) that are unique to plants and function particularly under conditions of nitrogen starvation. These RWP-RKs have been classified in two sub-families, NLPs (NIN-like proteins) and RKDs (RWP-RK domain proteins). NLPs regulate tissue-specific expression of genes involved in nitrogen use efficiency (NUE) and RKDs regulate expression of genes involved in gametogenesis/embryogenesis. During the present study, using in silico approach, 37 wheat RWP-RK genes were identified, which included 18 TaNLPs (2865 to 7340 bp with 4/5 exons), distributed on 15 chromosomes from 5 homoeologous groups (with two genes each on 4B,4D and 5A) and 19 TaRKDs (1064 to 5768 bp with 1 to 6 exons) distributed on 12 chromosomes from 4 homoeologous groups (except groups 1, 4 and 5); 2-3 splice variants were also available in 9 of the 37 genes. Sixteen (16) of these genes also carried 24 SSRs (simple sequence repeats), while 11 genes had targets for 13 different miRNAs. At the protein level, MD simulation analysis suggested their interaction with nitrate-ions. Significant differences were observed in the expression of only two (TaNLP1 and TaNLP2) of the nine representative genes that were used for in silico expression analysis under varying levels of N at post-anthesis stage (data for other genes was not available for in silico expression analysis). Differences in expression were also observed during qRT-PCR, when expression of four representative genes (TaNLP2, TaNLP7, TaRKD6 and TaRKD9) was examined in roots and shoots of seedlings (under different conditions of N supply) in two contrasting genotypes which differed in NUE (C306 with low NUE and HUW468 with high NUE). These four genes for qRT-PCR were selected on the basis of previous literature, level of homology and the level of expression (in silico study). In particular, the TaNLP7 gene showed significant up-regulation in the roots and shoots of HUW468 (with higher NUE) during N-starvation; this gene has already been ...
    Keywords Medicine ; R ; Science ; Q
    Subject code 572
    Language English
    Publishing date 2018-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top