LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 11

Search options

  1. Article: The Human Amyloid Precursor Protein Binds Copper Ions Dominated by a Picomolar-Affinity Site in the Helix-Rich E2 Domain

    Young, Tessa R / Anthony G. Wedd / Roberto Cappai / Tara L. Pukala / Zhiguang Xiao

    Biochemistry. 2018 June 12, v. 57, no. 28

    2018  

    Abstract: A manifestation of Alzheimer’s disease (AD) is the aggregation in the brain of amyloid β (Aβ) peptides derived from the amyloid precursor protein (APP). APP has been linked to modulation of normal copper homeostasis, while dysregulation of Aβ production ... ...

    Abstract A manifestation of Alzheimer’s disease (AD) is the aggregation in the brain of amyloid β (Aβ) peptides derived from the amyloid precursor protein (APP). APP has been linked to modulation of normal copper homeostasis, while dysregulation of Aβ production and clearance has been associated with disruption of copper balance. However, quantitative copper chemistry on APP is lacking, in contrast to the plethora of copper chemistry available for Aβ peptides. The soluble extracellular protein domain sAPPα (molar mass including post-translational modifications of ∼100 kDa) has now been isolated in good yield and high quality. It is known to feature several copper binding sites with different affinities. However, under Cu-limiting conditions, it binds either Cu(I) or Cu(II) with picomolar affinity at a single site (labeled M1) that is located within the APP E2 subdomain. M1 in E2 was identified previously by X-ray crystallography as a Cu(II) site that features four histidine side chains (H313, H386, H432, and H436) as ligands. The presence of CuII(His)4 is confirmed in solution at pH ≤7.4, while Cu(I) binding involves either the same ligands or a subset. The binding affinities are pH-dependent, and the picomolar affinities for both Cu(I) and Cu(II) at pH 7.4 indicate that either oxidation state may be accessible under physiological conditions. Redox activity was observed in the presence of an electron donor (ascorbate) and acceptor (dioxygen). A critical analysis of the potential biological implications of these findings is presented.
    Keywords Alzheimer disease ; amyloid ; binding capacity ; binding sites ; brain ; copper ; histidine ; homeostasis ; humans ; ligands ; molecular weight ; oxidation ; oxygen ; peptides ; pH ; post-translational modification ; protein domains ; X-ray diffraction
    Language English
    Dates of publication 2018-0612
    Size p. 4165-4176.
    Publishing place American Chemical Society
    Document type Article
    ZDB-ID 1108-3
    ISSN 1520-4995 ; 0006-2960
    ISSN (online) 1520-4995
    ISSN 0006-2960
    DOI 10.1021/acs.biochem.8b00572
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  2. Article ; Online: The amyloid precursor protein derivative, APP96-110, is efficacious following intravenous administration after traumatic brain injury.

    Stephanie L Plummer / Frances Corrigan / Emma Thornton / Joshua A Woenig / Robert Vink / Roberto Cappai / Corinna Van Den Heuvel

    PLoS ONE, Vol 13, Iss 1, p e

    2018  Volume 0190449

    Abstract: Following traumatic brain injury (TBI) neurological damage is ongoing through a complex cascade of primary and secondary injury events in the ensuing minutes, days and weeks. The delayed nature of secondary injury provides a valuable window of ... ...

    Abstract Following traumatic brain injury (TBI) neurological damage is ongoing through a complex cascade of primary and secondary injury events in the ensuing minutes, days and weeks. The delayed nature of secondary injury provides a valuable window of opportunity to limit the consequences with a timely treatment. Recently, the amyloid precursor protein (APP) and its derivative APP96-110 have shown encouraging neuroprotective activity following TBI following an intracerebroventricular administration. Nevertheless, its broader clinical utility would be enhanced by an intravenous (IV) administration. This study assessed the efficacy of IV APP96-110, where a dose-response for a single dose of 0.005mg/kg- 0.5mg/kg APP96-110 at either 30 minutes or 5 hours following moderate-severe diffuse impact-acceleration injury was performed. Male Sprague-Dawley rats were assessed daily for 3 or 7 days on the rotarod to examine motor outcome, with a separate cohort of animals utilised for immunohistochemistry analysis 3 days post-TBI to assess axonal injury and neuroinflammation. Animals treated with 0.05mg/kg or 0.5mg/kg APP96-110 after 30 minutes demonstrated significant improvements in motor outcome. This was accompanied by a reduction in axonal injury and neuroinflammation in the corpus callosum at 3 days post-TBI, whereas 0.005mg/kg had no effect. In contrast, treatment with 0.005m/kg or 0.5mg/kg APP96-110 at 5 hours post-TBI demonstrated significant improvements in motor outcome over 3 days, which was accompanied by a reduction in axonal injury in the corpus callosum. This demonstrates that APP96-110 remains efficacious for up to 5 hours post-TBI when administered IV, and supports its development as a novel therapeutic compound following TBI.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2018-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: The interplay between lipids and dopamine on α-synuclein oligomerization and membrane binding

    Roberto Cappai / Chi L. L. Pham

    Bioscience Reports, Vol 33, Iss 5, p e

    2013  Volume 00074

    Abstract: The deposition of α-syn (α-synuclein) as amyloid fibrils and the selective loss of DA (dopamine) containing neurons in the substantia nigra are two key features of PD (Parkinson's disease). α-syn is a natively unfolded protein and adopts an α-helical ... ...

    Abstract The deposition of α-syn (α-synuclein) as amyloid fibrils and the selective loss of DA (dopamine) containing neurons in the substantia nigra are two key features of PD (Parkinson's disease). α-syn is a natively unfolded protein and adopts an α-helical conformation upon binding to lipid membrane. Oligomeric species of α-syn have been proposed to be the pathogenic species associated with PD because they can bind lipid membranes and disrupt membrane integrity. DA is readily oxidized to generate reactive intermediates and ROS (reactive oxygen species) and in the presence of DA, α-syn form of SDS-resistant soluble oligomers. It is postulated that the formation of the α-syn:DA oligomers involves the cross-linking of DA-melanin with α-syn, via covalent linkage, hydrogen and hydrophobic interactions. We investigate the effect of lipids on DA-induced α-syn oligomerization and studied the ability of α-syn:DA oligomers to interact with lipids vesicles. Our results show that the interaction of α-syn with lipids inhibits the formation of DA-induced α-syn oligomers. Moreover, the α-syn:DA oligomer cannot interact with lipid vesicles or cause membrane permeability. Thus, the formation of α-syn:DA oligomers may alter the actions of α-syn which require membrane association, leading to disruption of its normal cellular function.
    Keywords α-synuclein ; dopamine ; lipid ; oligomer ; Parkinson’s disease ; Biology (General) ; QH301-705.5 ; Science ; Q ; DOAJ:Biology ; DOAJ:Biology and Life Sciences
    Subject code 571
    Language English
    Publishing date 2013-10-01T00:00:00Z
    Publisher Portland Press Ltd
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Conformational behavior and aggregation of ataxin-3 in SDS.

    Helen M Saunders / Victoria A Hughes / Roberto Cappai / Stephen P Bottomley

    PLoS ONE, Vol 8, Iss 7, p e

    2013  Volume 69416

    Abstract: Spinocerebellar ataxia type 3 (SCA3) is one of nine polyglutamine (polyQ) diseases all characterized by the presence of intraneuronal inclusions that contain aggregated protein. Aggregation of ataxin-3, the causative protein of SCA3, has been well ... ...

    Abstract Spinocerebellar ataxia type 3 (SCA3) is one of nine polyglutamine (polyQ) diseases all characterized by the presence of intraneuronal inclusions that contain aggregated protein. Aggregation of ataxin-3, the causative protein of SCA3, has been well characterized in vitro, with both pathogenic and non-pathogenic length ataxin-3 undergoing fibrillogenesis. However, only ataxin-3 containing an expanded polyQ tract leads to SCA3. Therefore other cellular factors, not present in previous in vitro studies, may modulate aggregation during disease. The interactions between fibrillar species and cell membranes have been characterized in a number of amyloid diseases, including Huntington's Disease, and these interactions affect aggregation and toxicity. We have characterized the effects of the membrane mimetic sodium dodecyl sulfate (SDS) on ataxin-3 structure and aggregation, to show that both micellar and non-micellar SDS have differing effects on the two stages of ataxin-3 aggregation. We also demonstrate that fibrillar ataxin-3 binds phospholipids, in particular phosphorylated phosphotidylinositols. These results highlight the effect of intracellular factors on the ataxin-3 misfolding landscape and their implications in SCA3 and polyQ diseases in general are discussed.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2013-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: An update on the toxicity of Aβ in Alzheimer’s disease

    Jürgen Götz / Lars M Ittner / Nicole Schonrock / Roberto Cappai

    Neuropsychiatric Disease and Treatment, Vol 2008, Iss Issue 6, Pp 1033-

    2008  Volume 1042

    Abstract: Jürgen Götz1, Lars M Ittner1, Nicole Schonrock1, Roberto Cappai21Alzheimer’s and Parkinson’s Disease Laboratory, Brain and Mind Research Institute, University of Sydney, NSW, Australia; 2Department of Pathology, The University of Melbourne, Victoria, ... ...

    Abstract Jürgen Götz1, Lars M Ittner1, Nicole Schonrock1, Roberto Cappai21Alzheimer’s and Parkinson’s Disease Laboratory, Brain and Mind Research Institute, University of Sydney, NSW, Australia; 2Department of Pathology, The University of Melbourne, Victoria, AustraliaAbstract: Alzheimer’s disease is characterized histopathologically by deposition of insoluble forms of the peptide Aβ and the protein tau in brain. Aβ is the principal component of amyloid plaques and tau of neurofibrillary tangles. Familial cases of AD are associated with causal mutations in the gene encoding the amyloid precursor protein, APP, from which the amyloidogenic Aβ peptide is derived, and this supports a role for Aβ in disease. Aβ can promote tau pathology and at the same time its toxicity is also tau-dependent. Aβ can adopt different conformations including soluble oligomers and insoluble fibrillar species present in plaques. We discuss which of these conformations exert toxicity, highlight molecular pathways involved and discuss what has been learned by applying functional genomics.Keywords: amyloid, mitochondria, oligomer, proteomic, tau, transgenic
    Keywords Neurosciences. Biological psychiatry. Neuropsychiatry ; RC321-571 ; Internal medicine ; RC31-1245 ; Medicine ; R ; DOAJ:Neurology ; DOAJ:Medicine (General) ; DOAJ:Health Sciences
    Subject code 571
    Language English
    Publishing date 2008-12-01T00:00:00Z
    Publisher Dove Medical Press
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article: Probing Structural Changes during Self-assembly of Surface-Active Hydrophobin Proteins that Form Functional Amyloids in Fungi

    Pham, Chi L.L / Ann H. Kwan / Ariane Pillé / Borja Rodríguez de Francisco / Frank Wien / Isabel Valsecchi / J. Iñaki Guijarro / Margaret Sunde / Régine Dazzoni / Roberto Cappai / Sarah R. Ball / Victor Lo

    Journal of molecular biology. 2018 Oct. 12, v. 430, no. 20

    2018  

    Abstract: Hydrophobins are amphiphilic proteins secreted by filamentous fungi in a soluble form, which can self-assemble at hydrophilic/hydrophobic or water/air interfaces to form amphiphilic layers that have multiple biological roles. We have investigated the ... ...

    Abstract Hydrophobins are amphiphilic proteins secreted by filamentous fungi in a soluble form, which can self-assemble at hydrophilic/hydrophobic or water/air interfaces to form amphiphilic layers that have multiple biological roles. We have investigated the conformational changes that occur upon self-assembly of six hydrophobins that form functional amyloid fibrils with a rodlet morphology. These hydrophobins are present in the cell wall of spores from different fungal species. From available structures and NMR chemical shifts, we established the secondary structures of the monomeric forms of these proteins and monitored their conformational changes upon amyloid rodlet formation or thermal transitions using synchrotron radiation circular dichroism and Fourier-transform infrared spectroscopy (FT-IR). Thermal transitions were followed by synchrotron radiation circular dichroism in quartz cells that allowed for microbubbles and hence water/air interfaces to form and showed irreversible conformations that differed from the rodlet state for most of the proteins. In contrast, thermal transitions on hermetic calcium fluoride cells showed reversible conformational changes. Heating hydrophobin solutions with a water/air interface on a silicon crystal surface in FT-IR experiments resulted in a gain in β-sheet content typical of amyloid fibrils for all except one protein. Rodlet formation was further confirmed by electron microscopy. FT-IR spectra of pre-formed hydrophobin rodlet preparations also showed a gain in β-sheet characteristic of the amyloid cross-β structure. Our results indicate that hydrophobins are capable of significant conformational plasticity and the nature of the assemblies formed by these surface-active proteins is highly dependent on the interface at which self-assembly takes place.
    Keywords air ; amyloid ; circular dichroism spectroscopy ; electron microscopy ; fluorides ; Fourier transform infrared spectroscopy ; fungi ; hydrophilicity ; hydrophobicity ; hydrophobins ; microbubbles ; nuclear magnetic resonance spectroscopy ; phase transition ; plasticity ; quartz ; silicon ; spores
    Language English
    Dates of publication 2018-1012
    Size p. 3784-3801.
    Publishing place Elsevier Ltd
    Document type Article
    ZDB-ID 80229-3
    ISSN 1089-8638 ; 0022-2836
    ISSN (online) 1089-8638
    ISSN 0022-2836
    DOI 10.1016/j.jmb.2018.07.025
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  7. Article ; Online: Amyloid precursor protein is required for normal function of the rod and cone pathways in the mouse retina.

    Tracy Ho / Kirstan A Vessey / Roberto Cappai / Virginie Dinet / Frédéric Mascarelli / Giuseppe D Ciccotosto / Erica L Fletcher

    PLoS ONE, Vol 7, Iss 1, p e

    2012  Volume 29892

    Abstract: Amyloid precursor protein (APP) is a transmembrane glycoprotein frequently studied for its role in Alzheimer's disease. Our recent study in APP knockout (KO) mice identified an important role for APP in modulating normal neuronal development in the ... ...

    Abstract Amyloid precursor protein (APP) is a transmembrane glycoprotein frequently studied for its role in Alzheimer's disease. Our recent study in APP knockout (KO) mice identified an important role for APP in modulating normal neuronal development in the retina. However the role APP plays in the adult retina and whether it is required for vision is unknown. In this study we evaluated the role of APP in retinal function and morphology comparing adult wildtype (WT) and APP-KO mice. APP was expressed on neuronal cells of the inner retina, including horizontal, cone bipolar, amacrine and ganglion cells in WT mice. The function of the retina was assessed using the electroretinogram and although the rod photoreceptor responses were similar in APP-KO and WT mice, the post-photoreceptor, inner retinal responses of both the rod and cone pathways were reduced in APP-KO mice. These changes in inner retinal function did not translate to a substantial change in visual acuity as assessed using the optokinetic response or to changes in the gross cellular structure of the retina. These findings indicate that APP is not required for basic visual function, but that it is involved in modulating inner retinal circuitry.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2012-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: The N-terminal residues 43 to 60 form the interface for dopamine mediated α-synuclein dimerisation.

    Su Ling Leong / Mark G Hinds / Andrea R Connor / David P Smith / Eva Illes-Toth / Chi L L Pham / Kevin J Barnham / Roberto Cappai

    PLoS ONE, Vol 10, Iss 2, p e

    2015  Volume 0116497

    Abstract: α-synuclein (α-syn) is a major component of the intracellular inclusions called Lewy bodies, which are a key pathological feature in the brains of Parkinson's disease patients. The neurotransmitter dopamine (DA) inhibits the fibrillisation of α-syn into ... ...

    Abstract α-synuclein (α-syn) is a major component of the intracellular inclusions called Lewy bodies, which are a key pathological feature in the brains of Parkinson's disease patients. The neurotransmitter dopamine (DA) inhibits the fibrillisation of α-syn into amyloid, and promotes α-syn aggregation into SDS-stable soluble oligomers. While this inhibition of amyloid formation requires the oxidation of both DA and the methionines in α-syn, the molecular basis for these processes is still unclear. This study sought to define the protein sequences required for the generation of oligomers. We tested N- (α-syn residues 43-140) and C-terminally (1-95) truncated α-syn, and found that similar to full-length protein both truncated species formed soluble DA:α-syn oligomers, albeit 1-95 had a different profile. Using nuclear magnetic resonance (NMR), and the N-terminally truncated α-syn 43-140 protein, we analysed the structural characteristics of the DA:α-syn 43-140 dimer and α-syn 43-140 monomer and found the dimerisation interface encompassed residues 43 to 60. Narrowing the interface to this small region will help define the mechanism by which DA mediates the formation of SDS-stable soluble DA:α-syn oligomers.
    Keywords Medicine ; R ; Science ; Q
    Subject code 540
    Language English
    Publishing date 2015-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Neuroprotective copper bis(thiosemicarbazonato) complexes promote neurite elongation.

    Laura Bica / Jeffrey R Liddell / Paul S Donnelly / Clare Duncan / Aphrodite Caragounis / Irene Volitakis / Brett M Paterson / Roberto Cappai / Alexandra Grubman / James Camakaris / Peter J Crouch / Anthony R White

    PLoS ONE, Vol 9, Iss 2, p e

    2014  Volume 90070

    Abstract: Abnormal biometal homeostasis is a central feature of many neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and motor neuron disease. Recent studies have shown that metal complexing compounds behaving as ... ...

    Abstract Abnormal biometal homeostasis is a central feature of many neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and motor neuron disease. Recent studies have shown that metal complexing compounds behaving as ionophores such as clioquinol and PBT2 have robust therapeutic activity in animal models of neurodegenerative disease; however, the mechanism of neuroprotective action remains unclear. These neuroprotective or neurogenerative processes may be related to the delivery or redistribution of biometals, such as copper and zinc, by metal ionophores. To investigate this further, we examined the effect of the bis(thiosemicarbazonato)-copper complex, Cu(II)(gtsm) on neuritogenesis and neurite elongation (neurogenerative outcomes) in PC12 neuronal-related cultures. We found that Cu(II)(gtsm) induced robust neurite elongation in PC12 cells when delivered at concentrations of 25 or 50 nM overnight. Analogous effects were observed with an alternative copper bis(thiosemicarbazonato) complex, Cu(II)(atsm), but at a higher concentration. Induction of neurite elongation by Cu(II)(gtsm) was restricted to neurites within the length range of 75-99 µm with a 2.3-fold increase in numbers of neurites in this length range with 50 nM Cu(II)(gtsm) treatment. The mechanism of neurogenerative action was investigated and revealed that Cu(II)(gtsm) inhibited cellular phosphatase activity. Treatment of cultures with 5 nM FK506 (calcineurin phosphatase inhibitor) resulted in analogous elongation of neurites compared to 50 nM Cu(II)(gtsm), suggesting a potential link between Cu(II)(gtsm)-mediated phosphatase inhibition and neurogenerative outcomes.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2014-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer's disease.

    Paul A Adlard / Laura Bica / Anthony R White / Milawaty Nurjono / Gulay Filiz / Peter J Crouch / Paul S Donnelly / Roberto Cappai / David I Finkelstein / Ashley I Bush

    PLoS ONE, Vol 6, Iss 3, p e

    2011  Volume 17669

    Abstract: We have previously demonstrated that brief treatment of APP transgenic mice with metal ionophores (PBT2, Prana Biotechnology) rapidly and markedly improves learning and memory. To understand the potential mechanisms of action underlying this phenomenon ... ...

    Abstract We have previously demonstrated that brief treatment of APP transgenic mice with metal ionophores (PBT2, Prana Biotechnology) rapidly and markedly improves learning and memory. To understand the potential mechanisms of action underlying this phenomenon we examined hippocampal dendritic spine density, and the levels of key proteins involved in learning and memory, in young (4 months) and old (14 months) female Tg2576 mice following brief (11 days) oral treatment with PBT2 (30 mg/kg/d). Transgenic mice exhibited deficits in spine density compared to littermate controls that were significantly rescued by PBT2 treatment in both the young (+17%, p<0.001) and old (+32%, p<0.001) animals. There was no effect of PBT2 on spine density in the control animals. In the transgenic animals, PBT2 treatment also resulted in significant increases in brain levels of CamKII (+57%, p = 0.005), spinophilin (+37%, p = 0.04), NMDAR1A (+126%, p = 0.02), NMDAR2A (+70%, p = 0.05), pro-BDNF (+19%, p = 0.02) and BDNF (+19%, p = 0.04). While PBT2-treatment did not significantly alter neurite-length in vivo, it did increase neurite outgrowth (+200%, p = 0.006) in cultured cells, and this was abolished by co-incubation with the transition metal chelator, diamsar. These data suggest that PBT2 may affect multiple aspects of snaptic health/efficacy. In Alzheimer's disease therefore, PBT2 may restore the uptake of physiological metal ions trapped within extracellular β-amyloid aggregates that then induce biochemical and anatomical changes to improve cognitive function.
    Keywords Medicine ; R ; Science ; Q
    Subject code 630
    Language English
    Publishing date 2011-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top