LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 16

Search options

  1. Article ; Online: Molecular Dynamics Simulations of Amylose- and Cellulose-Based Selectors and Related Enantioseparations in Liquid Phase Chromatography

    Roberto Dallocchio / Alessandro Dessì / Barbara Sechi / Paola Peluso

    Molecules, Vol 28, Iss 21, p

    2023  Volume 7419

    Abstract: In the last few decades, theoretical and technical advancements in computer facilities and computational techniques have made molecular modeling a useful tool in liquid-phase enantioseparation science for exploring enantioselective recognition mechanisms ...

    Abstract In the last few decades, theoretical and technical advancements in computer facilities and computational techniques have made molecular modeling a useful tool in liquid-phase enantioseparation science for exploring enantioselective recognition mechanisms underlying enantioseparations and for identifying selector–analyte noncovalent interactions that contribute to binding and recognition. Because of the dynamic nature of the chromatographic process, molecular dynamics (MD) simulations are particularly versatile in the visualization of the three-dimensional structure of analytes and selectors and in the unravelling of mechanisms at molecular levels. In this context, MD was also used to explore enantioseparation processes promoted by amylose and cellulose-based selectors, the most popular chiral selectors for liquid-phase enantioselective chromatography. This review presents a systematic analysis of the literature published in this field, with the aim of providing the reader with a comprehensive picture about the state of the art and what is still missing for modeling cellulose benzoates and the phenylcarbamates of amylose and cellulose and related enantioseparations with MD. Furthermore, advancements and outlooks, as well as drawbacks and pitfalls still affecting the applicability of MD in this field, are also discussed. The importance of integrating theoretical and experimental approaches is highlighted as an essential strategy for profiling mechanisms and noncovalent interaction patterns.
    Keywords computational methods ; enantioselective recognition ; enantioseparation ; molecular dynamics ; polysaccharide-based selectors ; Organic chemistry ; QD241-441
    Subject code 612
    Language English
    Publishing date 2023-11-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Antamanide Analogs as Potential Inhibitors of Tyrosinase

    Claudia Honisch / Matteo Gazziero / Roberto Dallocchio / Alessandro Dessì / Davide Fabbri / Maria Antonietta Dettori / Giovanna Delogu / Paolo Ruzza

    International Journal of Molecular Sciences, Vol 23, Iss 6240, p

    2022  Volume 6240

    Abstract: The tyrosinase enzyme, which catalyzes the hydroxylation of monophenols and the oxidation of o -diphenols, is typically involved in the synthesis of the dark product melanin starting from the amino acid tyrosine. Contributing to the browning of plant and ...

    Abstract The tyrosinase enzyme, which catalyzes the hydroxylation of monophenols and the oxidation of o -diphenols, is typically involved in the synthesis of the dark product melanin starting from the amino acid tyrosine. Contributing to the browning of plant and fruit tissues and to the hyperpigmentation of the skin, leading to melasma or age spots, the research of possible tyrosinase inhibitors has attracted much interest in agri-food, cosmetic, and medicinal industries. In this study, we analyzed the capability of antamanide, a mushroom bioactive cyclic decapeptide, and some of its glycine derivatives, compared to that of pseudostellarin A, a known tyrosinase inhibitor, to hinder tyrosinase activity by using a spectrophotometric method. Additionally, computational docking studies were performed in order to elucidate the interactions occurring with the tyrosinase catalytic site. Our results show that antamanide did not exert any inhibitory activity. On the contrary, the three glycine derivatives AG9 , AG6 , and AOG9 , which differ from each other by the position of a glycine that substitutes phenylalanine in the parent molecule, improving water solubility and flexibility, showed tyrosinase inhibition by spectrophotometric assays. Analytical data were confirmed by computational studies.
    Keywords tyrosinase inhibition ; antamanide ; bioactive peptides ; UV-spectroscopy ; computational docking ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 540
    Language English
    Publishing date 2022-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Molecular Docking and Comparative Inhibitory Efficacy of Naturally Occurring Compounds on Vegetative Growth and Deoxynivalenol Biosynthesis in Fusarium culmorum

    Safa Oufensou / Alessandro Dessì / Roberto Dallocchio / Virgilio Balmas / Emanuela Azara / Paola Carta / Quirico Migheli / Giovanna Delogu

    Toxins, Vol 13, Iss 759, p

    2021  Volume 759

    Abstract: The fungal pathogen Fusarium culmorum causes Fusarium head blight in cereals, resulting in yield loss and contamination of the grain by type B trichothecene mycotoxins such as deoxynivalenol (DON), and its acetylated derivatives. Synthesis of ... ...

    Abstract The fungal pathogen Fusarium culmorum causes Fusarium head blight in cereals, resulting in yield loss and contamination of the grain by type B trichothecene mycotoxins such as deoxynivalenol (DON), and its acetylated derivatives. Synthesis of trichothecenes is driven by a trichodiene synthase (TRI5) that converts farnesyl pyrophosphate (FPP) to trichodiene. In this work, 15 naturally occurring compounds that belong to the structural phenol and hydroxylated biphenyl classes were tested in vitro and in planta (durum wheat) to determine their inhibitory activity towards TRI5. In vitro analysis highlighted the fungicidal effect of these compounds when applied at 0.25 mM. Greenhouse assays showed a strong inhibitory activity of octyl gallate 5 , honokiol 13 and the combination propyl gallate 4 + thymol 7 on trichothecene biosynthesis. Docking analyses were run on the 3D model of F. culmorum TRI5 containing the inorganic pyrophosphate (PPi) or FPP. Significant ligand affinities with TRI-PPi and TRI-FPP were observed for the same sites for almost all compounds, with 1 and 2 as privileged sites. Octyl gallate 5 and honokiol 13 interacted almost exclusively with sites 1 and 2, by concurrently activating strong H-bonds with common sets of amino acids. These results open new perspectives for the targeted search of naturally occurring compounds that may find practical application in the eco-friendly control of FHB in wheat.
    Keywords Fusarium culmorum ; trichothecene B ; phenols and hydroxylated biphenyls ; natural compounds ; plant health ; food safety and security ; Medicine ; R
    Subject code 540
    Language English
    Publishing date 2021-10-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Exploring interaction modes between polysaccharide-based selectors and biologically active 4,4′-bipyridines by experimental and computational analysis

    Roberto Dallocchio / Alessandro Dessì / Barbara Sechi / Bezhan Chankvetadze / Sergio Cossu / Victor Mamane / Emmanuel Aubert / Carla Rozzo / Giuseppe Palmieri / Ylenia Spissu / Paola Peluso

    Journal of Chromatography Open, Vol 2, Iss , Pp 100030- (2022)

    2022  

    Abstract: In the last few years, chiral 4,4′-bipyridine derivatives have been developed for different applications in catalysis, enantioseparation science, supramolecular and theoretical chemistry by modulating the activity of the molecular system through the ... ...

    Abstract In the last few years, chiral 4,4′-bipyridine derivatives have been developed for different applications in catalysis, enantioseparation science, supramolecular and theoretical chemistry by modulating the activity of the molecular system through the introduction of specific substituents in the heteroaromatic scaffold. More recently, the biological activity of 2′-substituted-3,3′,5,5′-tetrachloro-2-iodo-4,4′-bipyridines has been explored in the field of transthyretin (TTR) fibrillogenesis inhibition, and the anticancer cytotoxicity of some derivatives is currently under systematic investigation. In this frame, the high-performance liquid chromatography (HPLC) enantioseparation of four atropisomeric 2,2′-disubstituted-4,4′-bipyridines (R, R’ = Ar, I), which contain multiple interaction sites, such as hydrogen bonding (HB) donors and acceptors, halogen bond (XB) donors, and π-extended electronic clouds, was explored by using n-hexane (Hex)/2-propanol (2-PrOH) 90:10 v/v as a mobile phase (MP), and eight chiral columns with coated and immobilized amylose- and cellulose-based selectors. The impact of subtle structural variations of analytes and selectors on their mutual intermolecular interactivity was evaluated in terms of retention (k) and selectivity (α) factors. On this basis, chromatographic analysis based on systematic screening of analytes and selectors was integrated with electrostatic potential (V) analysis and molecular dynamics (MD) simulations as computational techniques. The effect of temperature on retention, selectivity, and enantiomer elution order (EEO) of the analytes with coated and immobilized amylose tris(3,5-dimethylphenylcarbamate) was also considered by comparing the variation of the thermodynamic profile associated with each enantioseparation. Chromatographic responses proved to be strictly dependent on specific regions within the analyte, and functions of different interactions sites of the analytes as the structure of the chiral selector changes were significantly disclosed.
    Keywords Bipyridines ; Electrostatic potential ; Enantioseparation ; High-performance liquid chromatography ; Molecular dynamics ; Polysaccharide-based chiral stationary phases ; Analytical chemistry ; QD71-142
    Subject code 540
    Language English
    Publishing date 2022-11-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Rational Design, Synthesis, Characterization and Evaluation of Iodinated 4,4′-Bipyridines as New Transthyretin Fibrillogenesis Inhibitors

    Alessandro Dessì / Paola Peluso / Roberto Dallocchio / Robin Weiss / Giuseppina Andreotti / Mariateresa Allocca / Emmanuel Aubert / Patrick Pale / Victor Mamane / Sergio Cossu

    Molecules, Vol 25, Iss 2213, p

    2020  Volume 2213

    Abstract: The 3,3′,5,5′-tetrachloro-2-iodo-4,4′-bipyridine structure is proposed as a novel chemical scaffold for the design of new transthyretin (TTR) fibrillogenesis inhibitors. In the frame of a proof-of-principle exploration, four chiral 3,3′,5,5′-tetrachloro- ... ...

    Abstract The 3,3′,5,5′-tetrachloro-2-iodo-4,4′-bipyridine structure is proposed as a novel chemical scaffold for the design of new transthyretin (TTR) fibrillogenesis inhibitors. In the frame of a proof-of-principle exploration, four chiral 3,3′,5,5′-tetrachloro-2-iodo-2′-substituted-4,4′- bipyridines were rationally designed and prepared from a simple trihalopyridine in three steps, including a Cu-catalysed Finkelstein reaction to introduce iodine atoms on the heteroaromatic scaffold, and a Pd-catalysed coupling reaction to install the 2′-substituent. The corresponding racemates, along with other five chiral 4,4′-bipyridines containing halogens as substituents, were enantioseparated by high-performance liquid chromatography in order to obtain pure enantiomer pairs. All stereoisomers were tested against the amyloid fibril formation (FF) of wild type (WT)-TTR and two mutant variants, V30M and Y78F, in acid mediated aggregation experiments. Among the 4,4′-bipyridine derivatives, interesting inhibition activity was obtained for both enantiomers of the 3,3′,5,5′-tetrachloro-2′-(4-hydroxyphenyl)-2-iodo-4,4′-bipyridine. In silico docking studies were carried out in order to explore possible binding modes of the 4,4′-bipyridine derivatives into the TTR. The gained results point out the importance of the right combination of H-bond sites and the presence of iodine as halogen-bond donor. Both experimental and theoretical evidences pave the way for the utilization of the iodinated 4,4′-bipyridine core as template to design new promising inhibitors of TTR amyloidogenesis.
    Keywords bipyridines ; docking ; fibril formation ; halogen bond ; misfolding inhibition ; transthyretin ; Organic chemistry ; QD241-441
    Subject code 540
    Language English
    Publishing date 2020-05-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Syk Inhibitors

    Giuseppe Marchetti / Alessandro Dessì / Roberto Dallocchio / Ioannis Tsamesidis / Maria Carmina Pau / Francesco Michelangelo Turrini / Antonella Pantaleo

    International Journal of Molecular Sciences, Vol 21, Iss 7009, p

    New Computational Insights into Their Intraerythrocytic Action in Plasmodium falciparum Malaria

    2020  Volume 7009

    Abstract: Resistance to antimalarial drugs has spread rapidly over the past few decades. The WHO recommends artemisinin-based combination therapies for the treatment of uncomplicated malaria, but unfortunately these approaches are losing their efficacy in large ... ...

    Abstract Resistance to antimalarial drugs has spread rapidly over the past few decades. The WHO recommends artemisinin-based combination therapies for the treatment of uncomplicated malaria, but unfortunately these approaches are losing their efficacy in large areas of Southeast Asia. In 2016, artemisinin resistance was confirmed in 5 countries of the Greater Mekong subregion. We focused our study on Syk inhibitors as antimalarial drugs. The Syk protein is present in human erythrocytes, and the membrane of protein band 3 is its major target following activation by oxidant stress. Tyr phosphorylation of band 3 occurs during P. falciparum growth, leading to the release of microparticles containing hemicromes and structural weakening of the host cell membrane, simplifying merozoite reinfection. Syk inhibitors block these events by interacting with the Syk protein’s catalytic site. We performed in vitro proteomics and in silico studies and compared the results. In vitro studies were based on treatment of the parasite’s cellular cultures with different concentrations of Syk inhibitors, while proteomics studies were focused on the Tyr phosphorylation of band 3 by Syk protein with the same concentrations of drugs. In silico studies were based on different molecular modeling approaches in order to analyze and optimize the ligand–protein interactions and obtain the highest efficacy in vitro. In the presence of Syk inhibitors, we observed a marked decrease of band 3 Tyr phosphorylation according to the increase of the drug’s concentration. Our studies could be useful for the structural optimization of these compounds and for the design of novel Syk inhibitors in the future.
    Keywords band 3 ; red blood cells ; antimalarial drugs ; molecular docking ; molecular dynamics ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 500
    Language English
    Publishing date 2020-09-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Factors Impacting σ- and π-Hole Regions as Revealed by the Electrostatic Potential and Its Source Function Reconstruction

    Carlo Gatti / Alessandro Dessì / Roberto Dallocchio / Victor Mamane / Sergio Cossu / Robin Weiss / Patrick Pale / Emmanuel Aubert / Paola Peluso

    Molecules, Vol 25, Iss 4409, p

    The Case of 4,4′-Bipyridine Derivatives

    2020  Volume 4409

    Abstract: Positive electrostatic potential ( V ) values are often associated with σ- and π-holes, regions of lower electron density which can interact with electron-rich sites to form noncovalent interactions. Factors impacting σ- and π-holes may thus be monitored ...

    Abstract Positive electrostatic potential ( V ) values are often associated with σ- and π-holes, regions of lower electron density which can interact with electron-rich sites to form noncovalent interactions. Factors impacting σ- and π-holes may thus be monitored in terms of the shape and values of the resulting V . Further precious insights into such factors are obtained through a rigorous decomposition of the V values in atomic or atomic group contributions, a task here achieved by extending the Bader–Gatti source function (SF) for the electron density to V . In this article, this general methodology is applied to a series of 4,4′-bipyridine derivatives containing atoms from Groups VI (S, Se) and VII (Cl, Br), and the pentafluorophenyl group acting as a π-hole. As these molecules are characterized by a certain degree of conformational freedom due to the possibility of rotation around the two C–Ch bonds, from two to four conformational motifs could be identified for each structure through conformational search. On this basis, the impact of chemical and conformational features on σ- and π-hole regions could be systematically evaluated by computing the V values on electron density isosurfaces ( V S ) and by comparing and dissecting in atomic/atomic group contributions the V S maxima ( V S,max ) values calculated for different molecular patterns. The results of this study confirm that both chemical and conformational features may seriously impact σ- and π-hole regions and provide a clear analysis and a rationale of why and how this influence is realized. Hence, the proposed methodology might offer precious clues for designing changes in the σ- and π-hole regions, aimed at affecting their potential involvement in noncovalent interactions in a desired way.
    Keywords atomic group contributions ; bipyridines ; chalcogen bond ; electrostatic potential ; halogen bond ; σ-hole ; Organic chemistry ; QD241-441
    Subject code 541
    Language English
    Publishing date 2020-09-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Enantioseparation of 5,5′-Dibromo-2,2′-Dichloro-3-Selanyl-4,4′-Bipyridines on Polysaccharide-Based Chiral Stationary Phases

    Paola Peluso / Alessandro Dessì / Roberto Dallocchio / Barbara Sechi / Carlo Gatti / Bezhan Chankvetadze / Victor Mamane / Robin Weiss / Patrick Pale / Emmanuel Aubert / Sergio Cossu

    Molecules, Vol 26, Iss 221, p

    Exploring Chalcogen Bonds in Liquid-Phase Chromatography

    2021  Volume 221

    Abstract: The chalcogen bond (ChB) is a noncovalent interaction based on electrophilic features of regions of electron charge density depletion (σ-holes) located on bound atoms of group VI. The σ-holes of sulfur and heavy chalcogen atoms (Se, Te) (donors) can ... ...

    Abstract The chalcogen bond (ChB) is a noncovalent interaction based on electrophilic features of regions of electron charge density depletion (σ-holes) located on bound atoms of group VI. The σ-holes of sulfur and heavy chalcogen atoms (Se, Te) (donors) can interact through their positive electrostatic potential ( V ) with nucleophilic partners such as lone pairs, π-clouds, and anions (acceptors). In the last few years, promising applications of ChBs in catalysis, crystal engineering, molecular biology, and supramolecular chemistry have been reported. Recently, we explored the high-performance liquid chromatography (HPLC) enantioseparation of fluorinated 3-arylthio-4,4′-bipyridines containing sulfur atoms as ChB donors. Following this study, herein we describe the comparative enantioseparation of three 5,5′-dibromo-2,2′-dichloro-3-selanyl-4,4′-bipyridines on polysaccharide-based chiral stationary phases (CSPs) aiming to understand function and potentialities of selenium σ-holes in the enantiodiscrimination process. The impact of the chalcogen substituent on enantioseparation was explored by using sulfur and non-chalcogen derivatives as reference substances for comparison. Our investigation also focused on the function of the perfluorinated aromatic ring as a π-hole donor recognition site. Thermodynamic quantities associated with the enantioseparation were derived from van’t Hoff plots and local electron charge density of specific molecular regions of the interacting partners were inspected in terms of calculated V . On this basis, by correlating theoretical data and experimental results, the participation of ChBs and π-hole bonds in the enantiodiscrimination process was reasonably confirmed.
    Keywords bipyridines ; chalcogen bond ; electrostatic potential ; enantioseparation ; high-performance liquid chromatography ; polysaccharide-based chiral stationary phases ; Organic chemistry ; QD241-441
    Subject code 540 ; 541
    Language English
    Publishing date 2021-01-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Natural Phenolic Inhibitors of Trichothecene Biosynthesis by the Wheat Fungal Pathogen Fusarium culmorum

    Giovanna Pani / Alessandro Dessì / Roberto Dallocchio / Barbara Scherm / Emanuela Azara / Giovanna Delogu / Quirico Migheli

    PLoS ONE, Vol 11, Iss 6, p e

    A Computational Insight into the Structure-Activity Relationship.

    2016  Volume 0157316

    Abstract: A model of the trichodiene synthase (TRI5) of the wheat fungal pathogen and type-B trichothecene producer Fusarium culmorum was developed based on homology modelling with the crystallized protein of F. sporotrichioides. Eight phenolic molecules, namely ... ...

    Abstract A model of the trichodiene synthase (TRI5) of the wheat fungal pathogen and type-B trichothecene producer Fusarium culmorum was developed based on homology modelling with the crystallized protein of F. sporotrichioides. Eight phenolic molecules, namely ferulic acid 1, apocynin 2, propyl gallate 3, eugenol 4, Me-dehydrozingerone 5, eugenol dimer 6, magnolol 7, and ellagic acid 8, were selected for their ability to inhibit trichothecene production and/or fungal vegetative growth in F. culmorum. The chemical structures of phenols were constructed and partially optimised based on Molecular Mechanics (MM) studies and energy minimisation by Density Functional Theory (DFT). Docking analysis of the phenolic molecules was run on the 3D model of F. culmorum TRI5. Experimental biological activity, molecular descriptors and interacting-structures obtained from computational analysis were compared. Besides the catalytic domain, three privileged sites in the interaction with the inhibitory molecules were identified on the protein surface. The TRI5-ligand interactions highlighted in this study represent a powerful tool to the identification of new Fusarium-targeted molecules with potential as trichothecene inhibitors.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2016-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article: Enantioseparation of fluorinated 3-arylthio-4,4’-bipyridines: Insights into chalcogen and π-hole bonds in high-performance liquid chromatography

    Peluso, Paola / Alessandro Dessì / Carlo Gatti / Emmanuel Aubert / Patrick Pale / Roberto Dallocchio / Robin Weiss / Sergio Cossu / Victor Mamane

    Journal of chromatography. 2018,

    2018  

    Abstract: A chalcogen bond (ChB) is a σ-hole-based noncovalent interaction between a Lewis base and an electrophilic element of Group VI (O, S, Se, Te), which behaves as a Lewis acid. Recently, we demonstrated that halogen bond, the more familiar σ-hole-based ... ...

    Abstract A chalcogen bond (ChB) is a σ-hole-based noncovalent interaction between a Lewis base and an electrophilic element of Group VI (O, S, Se, Te), which behaves as a Lewis acid. Recently, we demonstrated that halogen bond, the more familiar σ-hole-based interaction, is able to promote the enantioseparation of chiral compounds in HPLC environment. On this basis, an investigation to detect ChBs, functioning as stereoselective secondary interactions for HPLC enantioseparations, was started off and the results of this study are described herein. Our investigation also focused on the impact of the perfluorinated aromatic ring as a π-hole donor recognition site. For these purposes, seven atropisomeric fluorinated 3-arylthio-4,4’-bipyridines were designed, synthesized and used as potential ChB donors (ChBDs) with two cellulose-based chiral stationary phases (CSPs) containing carbonyl groups as ChB acceptors (ChBAs). In addition, one and two analogues lacking fluorine and sulphur, respectively, were prepared as terms of comparison. The design of the test analytes was computationally guided. In this regard, electrostatic potentials (EPs) associated with σ- and π-holes were computed and the atomic contributions to the sulphur EP maxima were derived using a molecular space partitioning in terms of Bader’s atomic basins. This procedure is akin to the Bader-Gatti electron density source function (SF) decomposition, yet suitably extended to the EP field. For five 3-substituted-4,4’-bipyridines, thermodynamic parameters were derived from van’t Hoff plots. Finally, the use of molecular dynamic (MD) simulation to model ChB in cellulose-analyte complexes was explored. Evidences that σ-hole and π-hole interactions can jointly drive HPLC enantioseparations through recognition sites generated by electronic charge depletion emerged from both experimental results and theoretical data.
    Keywords aromatic compounds ; basins ; fluorine ; high performance liquid chromatography ; Lewis acids ; Lewis bases ; models ; moieties ; selenium ; stereoselectivity ; sulfur ; tellurium ; thermodynamics
    Language English
    Size p. .
    Publishing place Elsevier B.V.
    Document type Article
    Note Pre-press version
    ZDB-ID 218139-3
    ISSN 0021-9673 ; 0378-4355 ; 0376-737X
    ISSN 0021-9673 ; 0378-4355 ; 0376-737X
    DOI 10.1016/j.chroma.2018.06.060
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

To top