LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 66

Search options

  1. Article ; Online: Cross-Reactivity Conferred by Homologous and Heterologous Prime-Boost A/H5 Influenza Vaccination Strategies in Humans

    Adinda Kok / Ron A. M. Fouchier / Mathilde Richard

    Vaccines, Vol 9, Iss 1465, p

    A Literature Review

    2021  Volume 1465

    Abstract: Avian influenza viruses from the A/H5 A/goose/Guangdong/1/1996 (GsGd) lineage pose a continuing threat to animal and human health. Since their emergence in 1997, these viruses have spread across multiple continents and have become enzootic in poultry. ... ...

    Abstract Avian influenza viruses from the A/H5 A/goose/Guangdong/1/1996 (GsGd) lineage pose a continuing threat to animal and human health. Since their emergence in 1997, these viruses have spread across multiple continents and have become enzootic in poultry. Additionally, over 800 cases of human infection with A/H5 GsGd viruses have been reported to date, which raises concerns about the potential for a new influenza virus pandemic. The continuous circulation of A/H5 GsGd viruses for over 20 years has resulted in the genetic and antigenic diversification of their hemagglutinin (HA) surface glycoprotein, which poses a serious challenge to pandemic preparedness and vaccine design. In the present article, clinical studies on A/H5 influenza vaccination strategies were reviewed to evaluate the breadth of antibody responses induced upon homologous and heterologous prime-boost vaccination strategies. Clinical data on immunological endpoints were extracted from studies and compiled into a dataset, which was used for the visualization and analysis of the height and breadth of humoral immune responses. Several aspects leading to high immunogenicity and/or cross-reactivity were identified, although the analysis was limited by the heterogeneity in study design and vaccine type used in the included studies. Consequently, crucial questions remain to be addressed in future studies on A/H5 GsGd vaccination strategies.
    Keywords avian influenza A virus ; H5 influenza virus ; zoonosis ; pandemic ; vaccination ; Medicine ; R
    Subject code 306
    Language English
    Publishing date 2021-12-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Impact of antigenic evolution and original antigenic sin on SARS-CoV-2 immunity

    Muriel Aguilar-Bretones / Ron A.M. Fouchier / Marion P.G. Koopmans / Gijsbert P. van Nierop

    The Journal of Clinical Investigation, Vol 133, Iss

    2023  Volume 1

    Abstract: Infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and vaccinations targeting the spike protein (S) offer protective immunity against coronavirus disease 2019 (COVID-19). This immunity may further be shaped by cross-reactivity ... ...

    Abstract Infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and vaccinations targeting the spike protein (S) offer protective immunity against coronavirus disease 2019 (COVID-19). This immunity may further be shaped by cross-reactivity with common cold coronaviruses. Mutations arising in S that are associated with altered intrinsic virus properties and immune escape result in the continued circulation of SARS-CoV-2 variants. Potentially, vaccine updates will be required to protect against future variants of concern, as for influenza. To offer potent protection against future variants, these second-generation vaccines may need to redirect immunity to epitopes associated with immune escape and not merely boost immunity toward conserved domains in preimmune individuals. For influenza, efficacy of repeated vaccination is hampered by original antigenic sin, an attribute of immune memory that leads to greater induction of antibodies specific to the first-encountered variant of an immunogen compared with subsequent variants. In this Review, recent findings on original antigenic sin are discussed in the context of SARS-CoV-2 evolution. Unanswered questions and future directions are highlighted, with an emphasis on the impact on disease outcome and vaccine design.
    Keywords Medicine ; R
    Language English
    Publishing date 2023-01-01T00:00:00Z
    Publisher American Society for Clinical Investigation
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Pathology and virology of natural highly pathogenic avian influenza H5N8 infection in wild Common buzzards (Buteo buteo)

    Valentina Caliendo / Lonneke Leijten / Marco W. G. van de Bildt / Ron A. M. Fouchier / Jolianne M. Rijks / Thijs Kuiken

    Scientific Reports, Vol 12, Iss 1, Pp 1-

    2022  Volume 6

    Abstract: Abstract Highly pathogenic avian influenza (HPAI) in wild birds is a major emerging disease, and a cause of increased mortality during outbreaks. The Common buzzard (Buteo buteo) has a considerable chance of acquiring the infection and therefore may ... ...

    Abstract Abstract Highly pathogenic avian influenza (HPAI) in wild birds is a major emerging disease, and a cause of increased mortality during outbreaks. The Common buzzard (Buteo buteo) has a considerable chance of acquiring the infection and therefore may function as bio-sentinel for the presence of virus in wildlife. This study aimed to determine the virus distribution and associated pathological changes in the tissues of Common buzzards that died with HPAI H5 virus infection during the 2020–2021 epizootic. Eleven freshly dead, HPAI H5 virus-positive Common buzzards were necropsied. Based on RT-PCR, all birds were systemically infected with HPAI H5N8 virus, as viral RNA was detected in cloacal and pharyngeal swabs and in all 10 selected tissues of the birds, with mean Ct values per tissue ranging from 22 for heart to 32 for jejunum. Based on histology and immunohistochemistry, the most common virus-associated pathological changes were necrotizing encephalitis (9/11 birds) and necrotizing myocarditis (7/11 birds). The proventriculus of two birds showed virus-associated necrosis, indicating tropism of this virus for the digestive tract. Our advice is to collect at least a miniset of samples including brain, heart, liver, and spleen, as these tissues were positive both by RT-PCR and for virus-antigen-associated lesions.
    Keywords Medicine ; R ; Science ; Q
    Subject code 616
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Effect of 2020–21 and 2021–22 Highly Pathogenic Avian Influenza H5 Epidemics on Wild Birds, the Netherlands

    Valentina Caliendo / Erik Kleyheeg / Nancy Beerens / Kees C.J. Camphuysen / Rommert Cazemier / Armin R.W. Elbers / Ron A.M. Fouchier / Leon Kelder / Thijs Kuiken / Mardik Leopold / Roy Slaterus / Marcel A.H. Spierenburg / Henk van der Jeugd / Hans Verdaat / Jolianne M. Rijks

    Emerging Infectious Diseases, Vol 30, Iss 1, Pp 50-

    2024  Volume 57

    Abstract: The number of highly pathogenic avian influenza (HPAI) H5-related infections and deaths of wild birds in Europe was high during October 1, 2020–September 30, 2022. To quantify deaths among wild species groups with known susceptibility for HPAI H5 during ... ...

    Abstract The number of highly pathogenic avian influenza (HPAI) H5-related infections and deaths of wild birds in Europe was high during October 1, 2020–September 30, 2022. To quantify deaths among wild species groups with known susceptibility for HPAI H5 during those epidemics, we collected and recorded mortality data of wild birds in the Netherlands. HPAI virus infection was reported in 51 bird species. The species with the highest numbers of reported dead and infected birds varied per epidemic year; in 2020–21, they were within the Anatidae family, in particular barnacle geese (Branta leucopsis) and in 2021–22, they were within the sea bird group, particularly Sandwich terns (Thalasseus sandvicensis) and northern gannet (Morus bassanus). Because of the difficulty of anticipating and modeling the future trends of HPAI among wild birds, we recommend monitoring live and dead wild birds as a tool for surveillance of the changing dynamics of HPAI.
    Keywords influenza ; avian influenza ; HPAI ; wild birds ; H5N1 ; barnacle goose ; Medicine ; R ; Infectious and parasitic diseases ; RC109-216
    Subject code 590
    Language English
    Publishing date 2024-01-01T00:00:00Z
    Publisher Centers for Disease Control and Prevention
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Optimizing environmental safety and cell-killing potential of oncolytic Newcastle Disease virus with modifications of the V, F and HN genes

    J. Fréderique de Graaf / Stefan van Nieuwkoop / Theo Bestebroer / Daphne Groeneveld / Casper H. J. van Eijck / Ron A. M. Fouchier / Bernadette G. van den Hoogen

    PLoS ONE, Vol 17, Iss

    2022  Volume 2

    Abstract: Newcastle Disease Virus (NDV) is an avian RNA virus, which was shown to be effective and safe for use in oncolytic viral therapy for several tumour malignancies. The presence of a multi basic cleavage site (MBCS) in the fusion protein improved its ... ...

    Abstract Newcastle Disease Virus (NDV) is an avian RNA virus, which was shown to be effective and safe for use in oncolytic viral therapy for several tumour malignancies. The presence of a multi basic cleavage site (MBCS) in the fusion protein improved its oncolytic efficacy in vitro and in vivo. However, NDV with a MBCS can be virulent in poultry. We aimed to develop an NDV with a MBCS but with reduced virulence for poultry while remaining effective in killing human tumour cells. To this end, the open reading frame of the V protein, an avian specific type I interferon antagonist, was disrupted by introducing multiple mutations. NDV with a mutated V gene was attenuated in avian cells and chicken and duck eggs. Although this virus still killed tumour cells, the efficacy was reduced compared to the virulent NDV. Introduction of various mutations in the fusion (F) and hemagglutinin-neuraminidase (HN) genes slightly improved this efficacy. Taken together, these data demonstrated that NDV with a MBCS but with abrogation of the V protein ORF and mutations in the F and HN genes can be safe for evaluation in oncolytic viral therapy.
    Keywords Medicine ; R ; Science ; Q
    Subject code 616
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Optimizing environmental safety and cell-killing potential of oncolytic Newcastle Disease virus with modifications of the V, F and HN genes.

    J Fréderique de Graaf / Stefan van Nieuwkoop / Theo Bestebroer / Daphne Groeneveld / Casper H J van Eijck / Ron A M Fouchier / Bernadette G van den Hoogen

    PLoS ONE, Vol 17, Iss 2, p e

    2022  Volume 0263707

    Abstract: Newcastle Disease Virus (NDV) is an avian RNA virus, which was shown to be effective and safe for use in oncolytic viral therapy for several tumour malignancies. The presence of a multi basic cleavage site (MBCS) in the fusion protein improved its ... ...

    Abstract Newcastle Disease Virus (NDV) is an avian RNA virus, which was shown to be effective and safe for use in oncolytic viral therapy for several tumour malignancies. The presence of a multi basic cleavage site (MBCS) in the fusion protein improved its oncolytic efficacy in vitro and in vivo. However, NDV with a MBCS can be virulent in poultry. We aimed to develop an NDV with a MBCS but with reduced virulence for poultry while remaining effective in killing human tumour cells. To this end, the open reading frame of the V protein, an avian specific type I interferon antagonist, was disrupted by introducing multiple mutations. NDV with a mutated V gene was attenuated in avian cells and chicken and duck eggs. Although this virus still killed tumour cells, the efficacy was reduced compared to the virulent NDV. Introduction of various mutations in the fusion (F) and hemagglutinin-neuraminidase (HN) genes slightly improved this efficacy. Taken together, these data demonstrated that NDV with a MBCS but with abrogation of the V protein ORF and mutations in the F and HN genes can be safe for evaluation in oncolytic viral therapy.
    Keywords Medicine ; R ; Science ; Q
    Subject code 616
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Enterotropism of highly pathogenic avian influenza virus H5N8 from the 2016/2017 epidemic in some wild bird species

    Valentina Caliendo / Lonneke Leijten / Lineke Begeman / Marjolein J. Poen / Ron A. M. Fouchier / Nancy Beerens / Thijs Kuiken

    Veterinary Research, Vol 51, Iss 1, Pp 1-

    2020  Volume 10

    Abstract: Abstract In 2016/2017, H5N8 highly pathogenic avian influenza (HPAI) virus of the Goose/Guangdong lineage spread from Asia to Europe, causing the biggest and most widespread HPAI epidemic on record in wild and domestic birds in Europe. We hypothesized ... ...

    Abstract Abstract In 2016/2017, H5N8 highly pathogenic avian influenza (HPAI) virus of the Goose/Guangdong lineage spread from Asia to Europe, causing the biggest and most widespread HPAI epidemic on record in wild and domestic birds in Europe. We hypothesized that the wide dissemination of the 2016 H5N8 virus resulted at least partly from a change in tissue tropism from the respiratory tract, as in older HPAIV viruses, to the intestinal tract, as in low pathogenic avian influenza (LPAI) viruses, allowing more efficient faecal-oral transmission. Therefore, we determined the tissue tropism and associated lesions in wild birds found dead during the 2016 H5N8 epidemic, as well as the pattern of attachment of 2016 H5N8 virus to respiratory and intestinal tissues of four key wild duck species. We found that, out of 39 H5N8-infected wild birds of 12 species, four species expressed virus antigen in both respiratory and intestinal epithelium, one species only in respiratory epithelium, and one species only in intestinal epithelium. Virus antigen expression was association with inflammation and necrosis in multiple tissues. The level of attachment to wild duck intestinal epithelia of 2016 H5N8 virus was comparable to that of LPAI H4N5 virus, and higher than that of 2005 H5N1 virus for two of the four duck species and chicken tested. Overall, these results indicate that 2016 H5N8 may have acquired a similar enterotropism to LPAI viruses, without having lost the respirotropism of older HPAI viruses of the Goose/Guangdong lineage. The increased enterotropism of 2016 H5N8 implies that this virus had an increased chance to persist long term in the wild waterbird reservoir.
    Keywords avian influenza ; H5N8 ; H5N1 ; wild birds ; tropism ; virus histochemistry ; Veterinary medicine ; SF600-1100
    Subject code 590
    Language English
    Publishing date 2020-09-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: SARS-CoV and SARS-CoV-2 are transmitted through the air between ferrets over more than one meter distance

    Jasmin S. Kutter / Dennis de Meulder / Theo M. Bestebroer / Pascal Lexmond / Ard Mulders / Mathilde Richard / Ron A. M. Fouchier / Sander Herfst

    Nature Communications, Vol 12, Iss 1, Pp 1-

    2021  Volume 8

    Abstract: Some epidemiological data suggests that SARS-CoV-2 can be transmitted through the air over longer distances. Here, Kutter et al. show in the ferret model that SARS-CoV-2 and SARS-CoV can be transmitted through the air over more than a meter distance, ... ...

    Abstract Some epidemiological data suggests that SARS-CoV-2 can be transmitted through the air over longer distances. Here, Kutter et al. show in the ferret model that SARS-CoV-2 and SARS-CoV can be transmitted through the air over more than a meter distance, however, data should be interpreted with care, as ferrets are likely more susceptible to coronavirus infections.
    Keywords Science ; Q
    Language English
    Publishing date 2021-03-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Glycan remodeled erythrocytes facilitate antigenic characterization of recent A/H3N2 influenza viruses

    Frederik Broszeit / Rosanne J. van Beek / Luca Unione / Theo M. Bestebroer / Digantkumar Chapla / Jeong-Yeh Yang / Kelley W. Moremen / Sander Herfst / Ron A. M. Fouchier / Robert P. de Vries / Geert-Jan Boons

    Nature Communications, Vol 12, Iss 1, Pp 1-

    2021  Volume 12

    Abstract: Here, Broszeit et al. show that circulating A/H3N2 viruses have evolved binding specificity to α2,6-sialosides on extended LacNAc moieties and therefore cannot agglutinate erythrocytes. Applying glycan remodeling allows to install functional receptors on ...

    Abstract Here, Broszeit et al. show that circulating A/H3N2 viruses have evolved binding specificity to α2,6-sialosides on extended LacNAc moieties and therefore cannot agglutinate erythrocytes. Applying glycan remodeling allows to install functional receptors on erythrocytes and promotes identification of newly circulating variants to facilitate vaccine design.
    Keywords Science ; Q
    Language English
    Publishing date 2021-09-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: Evidence of the Presence of Low Pathogenic Avian Influenza A Viruses in Wild Waterfowl in 2018 in South Africa

    Marjolein J. Poen / Ron A. M. Fouchier / Richard J. Webby / Robert G. Webster / Mohamed E. El Zowalaty

    Pathogens, Vol 8, Iss 4, p

    2019  Volume 163

    Abstract: Avian influenza viruses are pathogens of global concern to both animal and human health. Wild birds are the natural reservoir of avian influenza viruses and facilitate virus transport over large distances. Surprisingly, limited research has been ... ...

    Abstract Avian influenza viruses are pathogens of global concern to both animal and human health. Wild birds are the natural reservoir of avian influenza viruses and facilitate virus transport over large distances. Surprisingly, limited research has been performed to determine avian influenza host species and virus dynamics in wild birds on the African continent, including South Africa. This study described the first wild bird surveillance efforts for influenza A viruses in KwaZulu-Natal Province in South Africa after the 2017/2018 outbreak with highly pathogenic avian influenza virus H5N8 in poultry. A total of 550 swab samples from 278 migratory waterfowl were tested using real-time RT-PCR methods. Two samples (0.7%) were positive for avian influenza virus based on the matrix gene real-time RT-PCR but were negative for the hemagglutinin subtypes H5 and H7. Unfortunately, no sequence information or viable virus could be retrieved from the samples. This study shows that avian influenza viruses are present in the South African wild bird population, emphasizing the need for more extensive surveillance studies to determine the South African avian influenza gene pool and relevant local host species.
    Keywords avian influenza ; epidemiology ; influenza a virus ; migratory waterfowl ; real-time rt-pcr ; south africa ; surveillance ; wild birds ; zoonosis ; Medicine ; R
    Language English
    Publishing date 2019-09-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top