LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 16

Search options

  1. Article: Morphological, physiological, and transcriptional responses of the freshwater diatom

    Zepernick, Brittany N / Niknejad, David J / Stark, Gwendolyn F / Truchon, Alexander R / Martin, Robbie M / Rossignol, Karen L / Paerl, Hans W / Wilhelm, Steven W

    Frontiers in microbiology

    2022  Volume 13, Page(s) 1044464

    Abstract: Harmful algal blooms (HABs) caused by the toxin-producing ... ...

    Abstract Harmful algal blooms (HABs) caused by the toxin-producing cyanobacteria
    Language English
    Publishing date 2022-11-25
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2587354-4
    ISSN 1664-302X
    ISSN 1664-302X
    DOI 10.3389/fmicb.2022.1044464
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: Recent increase in catastrophic tropical cyclone flooding in coastal North Carolina, USA: Long-term observations suggest a regime shift.

    Paerl, Hans W / Hall, Nathan S / Hounshell, Alexandria G / Luettich, Richard A / Rossignol, Karen L / Osburn, Christopher L / Bales, Jerad

    Scientific reports

    2019  Volume 9, Issue 1, Page(s) 10620

    Abstract: Coastal North Carolina, USA, has experienced three extreme tropical cyclone-driven flood events since 1999, causing catastrophic human impacts from flooding and leading to major alterations of water quality, biogeochemistry, and ecological conditions. ... ...

    Abstract Coastal North Carolina, USA, has experienced three extreme tropical cyclone-driven flood events since 1999, causing catastrophic human impacts from flooding and leading to major alterations of water quality, biogeochemistry, and ecological conditions. The apparent increased frequency and magnitudes of such events led us to question whether this is just coincidence or whether we are witnessing a regime shift in tropical cyclone flooding and associated ecosystem impacts. Examination of continuous rainfall records for coastal NC since 1898 reveals a period of unprecedentedly high precipitation since the late-1990's, and a trend toward increasingly high precipitation associated with tropical cyclones over the last 120 years. We posit that this trend, which is consistent with observations elsewhere, represents a recent regime shift with major ramifications for hydrology, carbon and nutrient cycling, water and habitat quality and resourcefulness of Mid-Atlantic and possibly other USA coastal regions.
    Language English
    Publishing date 2019-07-23
    Publishing country England
    Document type Journal Article ; Research Support, Non-U.S. Gov't ; Research Support, U.S. Gov't, Non-P.H.S.
    ZDB-ID 2615211-3
    ISSN 2045-2322 ; 2045-2322
    ISSN (online) 2045-2322
    ISSN 2045-2322
    DOI 10.1038/s41598-019-46928-9
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  3. Article: Harmful cyanobacterial aerosolization dynamics in the airshed of a eutrophic estuary

    Plaas, Haley E. / Paerl, Ryan W. / Baumann, Karsten / Karl, Colleen / Popendorf, Kimberly J. / Barnard, Malcolm A. / Chang, Naomi Y. / Curtis, Nathaniel P. / Huang, Hwa / Mathieson, Olivia L. / Sanchez, Joel / Maizel, Daniela J. / Bartenfelder, Amy N. / Braddy, Jeremy S. / Hall, Nathan S. / Rossignol, Karen L. / Sloup, Randolph / Paerl, Hans W.

    Science of the total environment. 2022 Dec. 15, v. 852

    2022  

    Abstract: In addition to obvious negative effects on water quality in eutrophic aquatic ecosystems, recent work suggests that cyanobacterial harmful algal blooms (CHABs) also impact air quality via emissions carrying cyanobacterial cells and cyanotoxins. However, ... ...

    Abstract In addition to obvious negative effects on water quality in eutrophic aquatic ecosystems, recent work suggests that cyanobacterial harmful algal blooms (CHABs) also impact air quality via emissions carrying cyanobacterial cells and cyanotoxins. However, the environmental controls on CHAB-derived aerosol and its potential public health impacts remain largely unknown. Accordingly, the aims of this study were to 1) investigate the occurrence of microcystins (MC) and putatively toxic cyanobacterial communities in particulate matter ≤ 2.5 μm in diameter (PM₂.₅), 2) elucidate environmental conditions promoting their aerosolization, and 3) identify associations between CHABs and PM₂.₅ concentrations in the airshed of the Chowan River-Albemarle Sound, an oligohaline, eutrophic estuary in eastern North Carolina, USA. In summer 2020, during peak CHAB season, continuous PM₂.₅ samples and interval water samples were collected at two distinctive sites for targeted analyses of cyanobacterial community composition and MC concentration. Supporting air and water quality measurements were made in parallel to contextualize findings and permit statistical analyses of environmental factors driving changes in CHAB-derived aerosol. MC concentrations were low throughout the study, but a CHAB dominated by Dolichospermum occurred from late June to early August. Several aquatic CHAB genera recovered from Chowan River surface water were identified in PM₂.₅ during multiple time points, including Anabaena, Aphanizomenon, Dolichospermum, Microcystis, and Pseudanabaena. Cyanobacterial enrichment in PM₂.₅ was indistinctive between subspecies, but at one site during the early bloom, we observed the simultaneous enrichment of several cyanobacterial genera in PM₂.₅. In association with the CHAB, the median PM₂.₅ mass concentration increased to 8.97 μg m⁻³ (IQR = 5.15), significantly above the non-bloom background of 5.35 μg m⁻³ (IQR = 3.70) (W = 1835, p < 0.001). Results underscore the need for highly resolved temporal measurements to conclusively investigate the role that CHABs play in regional air quality and respiratory health risk.
    Keywords Anabaena ; Aphanizomenon ; Dolichospermum ; Microcystis ; Pseudanabaena ; aerosols ; air ; air quality ; airshed ; community structure ; environment ; estuaries ; eutrophication ; microcystins ; particulates ; poisonous algae ; public health ; risk ; rivers ; summer ; surface water ; toxicity ; water quality ; North Carolina
    Language English
    Dates of publication 2022-1215
    Publishing place Elsevier B.V.
    Document type Article
    ZDB-ID 121506-1
    ISSN 1879-1026 ; 0048-9697
    ISSN (online) 1879-1026
    ISSN 0048-9697
    DOI 10.1016/j.scitotenv.2022.158383
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  4. Article ; Online: Roles of Nutrient Limitation on Western Lake Erie CyanoHAB Toxin Production.

    Barnard, Malcolm A / Chaffin, Justin D / Plaas, Haley E / Boyer, Gregory L / Wei, Bofan / Wilhelm, Steven W / Rossignol, Karen L / Braddy, Jeremy S / Bullerjahn, George S / Bridgeman, Thomas B / Davis, Timothy W / Wei, Jin / Bu, Minsheng / Paerl, Hans W

    Toxins

    2021  Volume 13, Issue 1

    Abstract: Cyanobacterial harmful algal bloom (CyanoHAB) proliferation is a global problem impacting ecosystem and human health. Western Lake Erie (WLE) typically endures two highly toxic CyanoHABs during summer: ... ...

    Abstract Cyanobacterial harmful algal bloom (CyanoHAB) proliferation is a global problem impacting ecosystem and human health. Western Lake Erie (WLE) typically endures two highly toxic CyanoHABs during summer: a
    MeSH term(s) Bacterial Toxins/chemistry ; Bacterial Toxins/metabolism ; Bacterial Toxins/toxicity ; Chlorophyll A/chemistry ; Cyanobacteria/physiology ; Great Lakes Region ; Harmful Algal Bloom ; Lakes/chemistry ; Lakes/microbiology
    Chemical Substances Bacterial Toxins ; Chlorophyll A (YF5Q9EJC8Y)
    Language English
    Publishing date 2021-01-09
    Publishing country Switzerland
    Document type Journal Article ; Research Support, Non-U.S. Gov't
    ZDB-ID 2518395-3
    ISSN 2072-6651 ; 2072-6651
    ISSN (online) 2072-6651
    ISSN 2072-6651
    DOI 10.3390/toxins13010047
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  5. Article: Recent increases of rainfall and flooding from tropical cyclones (TCs) in North Carolina (USA): implications for organic matter and nutrient cycling in coastal watersheds

    Paerl, Hans W / Hall, Nathan S / Hounshell, Alexandria G / Rossignol, Karen L / Barnard, Malcolm A / Luettich, Richard A., Jr / Rudolph, Jacob C / Osburn, Christopher L / Bales, Jerad / Harding, Lawrence W., Jr

    Biogeochemistry. 2020 Sept., v. 150, no. 2

    2020  

    Abstract: Coastal North Carolina experienced 36 tropical cyclones (TCs), including three floods of historical significance in the past two decades (Hurricanes Floyd-1999, Matthew-2016 and Florence-2018). These events caused catastrophic flooding and major ... ...

    Abstract Coastal North Carolina experienced 36 tropical cyclones (TCs), including three floods of historical significance in the past two decades (Hurricanes Floyd-1999, Matthew-2016 and Florence-2018). These events caused catastrophic flooding and major alterations of water quality, fisheries habitat and ecological conditions of the Albemarle-Pamlico Sound (APS), the second largest estuarine complex in the United States. Continuous rainfall records for coastal NC since 1898 reveal a period of unprecedented high precipitation storm events since the late-1990s. Six of seven of the “wettest” storm events in this > 120-year record occurred in the past two decades, identifying a period of elevated precipitation and flooding associated with recent TCs. We examined storm-related freshwater discharge, carbon (C) and nutrient, i.e., nitrogen (N) and phosphorus (P) loadings, and evaluated contributions to total annual inputs in the Neuse River Estuary (NRE), a major sub-estuary of the APS. These contributions were highly significant, accounting for > 50% of annual loads depending on antecedent conditions and storm-related flooding. Depending on the magnitude of freshwater discharge, the NRE either acted as a “processor” to partially assimilate and metabolize the loads or acted as a “pipeline” to transport the loads to the APS and coastal Atlantic Ocean. Under base-flow, terrestrial sources dominate riverine carbon. During storm events these carbon sources are enhanced through the inundation and release of carbon from wetlands. These findings show that event-scale discharge plays an important and, at times, predominant role in C, N and P loadings. We appear to have entered a new climatic regime characterized by more frequent extreme precipitation events, with major ramifications for hydrology, cycling of C, N and P, water quality and habitat conditions in estuarine and coastal waters.
    Keywords base flow ; carbon ; estuaries ; freshwater ; habitats ; nitrogen ; organic matter ; phosphorus ; rain ; riparian areas ; rivers ; water quality ; Atlantic Ocean ; North Carolina
    Language English
    Dates of publication 2020-09
    Size p. 197-216.
    Publishing place Springer International Publishing
    Document type Article
    Note NAL-AP-2-clean
    ZDB-ID 1478541-9
    ISSN 1573-515X ; 0168-2563
    ISSN (online) 1573-515X
    ISSN 0168-2563
    DOI 10.1007/s10533-020-00693-4
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  6. Article ; Online: Harmful cyanobacterial aerosolization dynamics in the airshed of a eutrophic estuary.

    Plaas, Haley E / Paerl, Ryan W / Baumann, Karsten / Karl, Colleen / Popendorf, Kimberly J / Barnard, Malcolm A / Chang, Naomi Y / Curtis, Nathaniel P / Huang, Hwa / Mathieson, Olivia L / Sanchez, Joel / Maizel, Daniela J / Bartenfelder, Amy N / Braddy, Jeremy S / Hall, Nathan S / Rossignol, Karen L / Sloup, Randolph / Paerl, Hans W

    The Science of the total environment

    2022  Volume 852, Page(s) 158383

    Abstract: In addition to obvious negative effects on water quality in eutrophic aquatic ecosystems, recent work suggests that cyanobacterial harmful algal blooms (CHABs) also impact air quality via emissions carrying cyanobacterial cells and cyanotoxins. However, ... ...

    Abstract In addition to obvious negative effects on water quality in eutrophic aquatic ecosystems, recent work suggests that cyanobacterial harmful algal blooms (CHABs) also impact air quality via emissions carrying cyanobacterial cells and cyanotoxins. However, the environmental controls on CHAB-derived aerosol and its potential public health impacts remain largely unknown. Accordingly, the aims of this study were to 1) investigate the occurrence of microcystins (MC) and putatively toxic cyanobacterial communities in particulate matter ≤ 2.5 μm in diameter (PM
    MeSH term(s) Microcystins/analysis ; Estuaries ; Lakes/microbiology ; Ecosystem ; Cyanobacteria ; Harmful Algal Bloom ; Particulate Matter/analysis
    Chemical Substances Microcystins ; Particulate Matter
    Language English
    Publishing date 2022-09-01
    Publishing country Netherlands
    Document type Journal Article
    ZDB-ID 121506-1
    ISSN 1879-1026 ; 0048-9697
    ISSN (online) 1879-1026
    ISSN 0048-9697
    DOI 10.1016/j.scitotenv.2022.158383
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  7. Article: Evolving Paradigms and Challenges in Estuarine and Coastal Eutrophication Dynamics in a Culturally and Climatically Stressed World

    Paerl, Hans W / Hall, Nathan S / Peierls, Benjamin L / Rossignol, Karen L

    Estuaries and coasts. 2014 Mar., v. 37, no. 2

    2014  

    Abstract: Coastal watersheds support more than one half of the world’s human population and are experiencing unprecedented urban, agricultural, and industrial expansion. The freshwater–marine continua draining these watersheds are impacted increasingly by nutrient ...

    Abstract Coastal watersheds support more than one half of the world’s human population and are experiencing unprecedented urban, agricultural, and industrial expansion. The freshwater–marine continua draining these watersheds are impacted increasingly by nutrient inputs and resultant eutrophication, including symptomatic harmful algal blooms, hypoxia, finfish and shellfish kills, and loss of higher plant and animal habitat. In addressing nutrient input reductions to stem and reverse eutrophication, phosphorus (P) has received priority traditionally in upstream freshwater regions, while controlling nitrogen (N) inputs has been the focus of management strategies in estuarine and coastal waters. However, freshwater, brackish, and full-salinity components of this continuum are connected structurally and functionally. Intensification of human activities has caused imbalances in N and P loading, altering nutrient limitation characteristics and complicating successful eutrophication control along the continuum. Several recent examples indicate the need for dual N and P input constraints as the only nutrient management option effective for long-term eutrophication control. Climatic changes increase variability in freshwater discharge with more severe storms and intense droughts and interact closely with nutrient inputs to modulate the magnitude and relative proportions of N and P loading. The effects of these interactions on phytoplankton production and composition were examined in two neighboring North Carolina lagoonal estuaries, the New River and Neuse River Estuaries, which are experiencing concurrent eutrophication and climatically driven hydrologic variability. Efforts aimed at stemming estuarine and coastal eutrophication in these and other similarly impacted estuarine systems should focus on establishing N and P input thresholds that take into account effects of hydrologic variability, so that eutrophication and harmful algal blooms can be controlled over a range of current and predicted climate change scenarios.
    Keywords algal blooms ; climate change ; coastal water ; estuaries ; eutrophication ; fish ; freshwater ; habitats ; human population ; humans ; hypoxia ; nitrogen ; nutrient management ; phosphorus ; rivers ; shellfish ; storms ; watersheds ; North Carolina
    Language English
    Dates of publication 2014-03
    Size p. 243-258.
    Publishing place Springer-Verlag
    Document type Article
    ZDB-ID 2229170-2
    ISSN 1559-2731 ; 1559-2723
    ISSN (online) 1559-2731
    ISSN 1559-2723
    DOI 10.1007/s12237-014-9773-x
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  8. Article: Hydrologic Variability and Its Control of Phytoplankton Community Structure and Function in Two Shallow, Coastal, Lagoonal Ecosystems: The Neuse and New River Estuaries, North Carolina, USA

    Paerl, Hans W / Hall, Nathan S / Peierls, Benjamin L / Rossignol, Karen L / Joyner, Alan R

    Estuaries and coasts. 2014 Mar., v. 37, no. Supplement 1

    2014  

    Abstract: Hydrologic conditions, especially changes in freshwater input, play an important, and at times dominant, role in determining the structure and function of phytoplankton communities and resultant water quality of estuaries. This is particularly true for ... ...

    Abstract Hydrologic conditions, especially changes in freshwater input, play an important, and at times dominant, role in determining the structure and function of phytoplankton communities and resultant water quality of estuaries. This is particularly true for microtidal, shallow water, lagoonal estuaries, where water flushing and residence times show large variations in response to changes in freshwater inputs. In coastal North Carolina, there has been an increase in frequency and intensity of extreme climatic (hydrologic) events over the past 15� years, including eight hurricanes, six tropical storms, and several record droughts; these events are forecast to continue in the foreseeable future. Each of the past storms exhibited unique hydrologic and nutrient loading scenarios for two representative and proximate coastal plain lagoonal estuaries, the Neuse and New River estuaries. In this synthesis, we used a 13-year (1998–2011) data set from the Neuse River Estuary, and more recent 4-year (2007–2011) data set from the nearby New River Estuary to examine the effects of these hydrologic events on phytoplankton community biomass and composition. We focused on the ability of specific taxonomic groups to optimize growth under hydrologically variable conditions, including seasonal wet/dry periods, episodic storms, and droughts. Changes in phytoplankton community composition and biomass were strongly modulated by the amounts, duration, and seasonality of freshwater discharge. In both estuaries, phytoplankton total and specific taxonomic group biomass exhibited a distinctive unimodal response to varying flushing rates resulting from both event-scale (i.e., major storms, hurricanes) and more chronic seasonal changes in freshwater input. However, unlike the net negative growth seen at long flushing times for nano-/microphytoplankton, the pigments specific to picophytoplankton (zeaxanthin) still showed positive net growth due to their competitive advantage under nutrient-limited conditions. Along with considerations of seasonality (temperature regimes), these relationships can be used to predict relative changes in phytoplankton community composition in response to hydrologic events and changes therein. Freshwater inputs and droughts, while not manageable in the short term, must be incorporated in water quality management strategies for these and other estuarine and coastal ecosystems faced with increasing frequencies and intensities of tropical cyclones, flooding, and droughts.
    Keywords biomass ; community structure ; data collection ; ecosystems ; estuaries ; hurricanes ; hydrology ; phytoplankton ; pollution load ; rivers ; seasonal variation ; water quality ; zeaxanthin ; North Carolina
    Language English
    Dates of publication 2014-03
    Size p. 31-45.
    Publishing place Springer-Verlag
    Document type Article
    ZDB-ID 2229170-2
    ISSN 1559-2731 ; 1559-2723
    ISSN (online) 1559-2731
    ISSN 1559-2723
    DOI 10.1007/s12237-013-9686-0
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  9. Article: Two decades of tropical cyclone impacts on North Carolina’s estuarine carbon, nutrient and phytoplankton dynamics: implications for biogeochemical cycling and water quality in a stormier world

    Paerl, Hans W / Crosswell, Joseph R / Van Dam, Bryce / Hall, Nathan S / Rossignol, Karen L / Osburn, Christopher L / Hounshell, Alexandria G / Sloup, Randolph S / Harding, Lawrence W., Jr

    Biogeochemistry. 2018 Dec., v. 141, no. 3

    2018  

    Abstract: Coastal North Carolina (USA) has experienced 35 tropical cyclones over the past 2 decades; the frequency of these events is expected to continue in the foreseeable future. Individual storms had unique and, at times, significant hydrologic, nutrient-, and ...

    Abstract Coastal North Carolina (USA) has experienced 35 tropical cyclones over the past 2 decades; the frequency of these events is expected to continue in the foreseeable future. Individual storms had unique and, at times, significant hydrologic, nutrient-, and carbon (C)-loading impacts on biogeochemical cycling and phytoplankton responses in a large estuarine complex, the Pamlico Sound (PS) and Neuse River Estuary (NRE). Major storms caused up to a doubling of annual nitrogen and tripling of phosphorus loading compared to non-storm years; magnitudes of loading depended on storm tracks, forward speed, and precipitation in NRE-PS watersheds. With regard to C cycling, NRE-PS was a sink for atmospheric CO2 during dry, storm-free years and a significant source of CO2 in years with at least one storm, although responses were storm-specific. Hurricane Irene (2011) mobilized large amounts of previously-accumulated terrigenous C in the watershed, mainly as dissolved organic carbon, and extreme winds rapidly released CO2 to the atmosphere. Historic flooding after Hurricanes Joaquin (2015) and Matthew (2016) provided large inputs of C from the watershed, modifying the annual C balance of NRE-PS and leading to sustained CO2 efflux for months. Storm type affected biogeochemical responses as C-enriched floodwaters enhanced air–water CO2 exchange during ‘wet’ storms, while CO2 fluxes during ‘windy’ storms were largely supported by previously-accumulated C. Nutrient loading and flushing jointly influenced spatio-temporal patterns of phytoplankton biomass and composition. These findings suggest the importance of incorporating freshwater discharge and C dynamics in nutrient management strategies for coastal ecosystems likely to experience a stormier future.
    Keywords biogeochemical cycles ; biomass ; carbon dioxide ; dissolved organic carbon ; ecosystems ; estuaries ; floods ; freshwater ; hurricanes ; nitrogen ; nutrient management ; phosphorus ; phytoplankton ; pollution load ; rivers ; water quality ; watersheds ; wind ; North Carolina
    Language English
    Dates of publication 2018-12
    Size p. 307-332.
    Publishing place Springer International Publishing
    Document type Article
    ZDB-ID 1478541-9
    ISSN 1573-515X ; 0168-2563
    ISSN (online) 1573-515X
    ISSN 0168-2563
    DOI 10.1007/s10533-018-0438-x
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  10. Article: Nutrients in precipitation and the phytoplankton responses to enrichment in surface waters of the Albemarle Peninsula, NC, USA after the establishment of a large-scale chicken egg farm

    Rossignol, Karen L / Paerl, Hans W / Fear, John M / Braddy, Jeremy S

    Hydrobiologia. 2011 Aug., v. 671, no. 1

    2011  

    Abstract: Nitrogen (N) and phosphorus (P) released in waste from animal feeding operations can stimulate phytoplankton biomass production in local receiving waters. Changes in weekly wet atmospheric N and P were measured from 2005 to 2008 at monitoring stations ... ...

    Abstract Nitrogen (N) and phosphorus (P) released in waste from animal feeding operations can stimulate phytoplankton biomass production in local receiving waters. Changes in weekly wet atmospheric N and P were measured from 2005 to 2008 at monitoring stations located 0.8, 7.9, and 10.3 km downwind from a new chicken egg production facility on the Albemarle Peninsula, North Carolina. After this farm began operating, there was a significant doubling in mean wet NH4 + concentrations (465–1,022 μg l−1) at 0.8 km with no change at the other sites. To measure the phytoplankton responses to nutrient enrichment, we conducted seasonal N and P enrichment bioassays from 2006 to 2008 on nearby Phelps Lake and Alligator River. These low-nutrient waters responded to nutrient additions, with the highest increases in phytoplankton primary productivity (14C uptake) and biomass (chlorophyll a) occurring in the combined N and P treatments suggesting co-limitation of N and P. Although we did not find an increased nutrient signal in precipitation at sites >0.8 km from the farm, there is the potential for atmospheric deposition of N to these and other waters located N/NE of the farm given prevailing winds and distance that NH4 + aerosols can travel. Furthermore, surface runoff from the farm may impact receiving waters downstream (e.g., Pungo and Pamlico Rivers). In order to prevent excessive phytoplankton productivity and biomass both N and P inputs should be carefully assessed and potentially controlled in these nutrient-sensitive waters.
    Keywords aerosols ; animal feeding operations ; animal wastes ; atmospheric deposition ; bioassays ; biomass production ; chicken eggs ; chlorophyll ; farms ; lakes ; nitrogen ; nutrients ; phosphorus ; phytoplankton ; primary productivity ; rivers ; runoff irrigation ; surface water ; wind ; North Carolina
    Language English
    Dates of publication 2011-08
    Size p. 181-191.
    Publishing place Springer-Verlag
    Document type Article
    ZDB-ID 214428-1
    ISSN 1573-5117 ; 0018-8158
    ISSN (online) 1573-5117
    ISSN 0018-8158
    DOI 10.1007/s10750-011-0715-3
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

To top