LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 7 of total 7

Search options

  1. Article ; Online: Generation of one control and four iPSCs clones from patients with Emery-Dreifuss muscular dystrophy type 1

    Magdalena Machowska / Claudia Bearzi / Katarzyna Piekarowicz / Izabela Łaczmańska / Ryszard Rzepecki

    Stem Cell Research, Vol 55, Iss , Pp 102487- (2021)

    2021  

    Abstract: Emery-Dreifuss muscular dystrophy type 1 (EDMD1) is a rare genetic disease caused by mutations in the EMD gene coding for a nuclear envelope protein emerin. We generated and characterized induced pluripotent stem cells (iPSCs) from two EDMD1 patients ... ...

    Abstract Emery-Dreifuss muscular dystrophy type 1 (EDMD1) is a rare genetic disease caused by mutations in the EMD gene coding for a nuclear envelope protein emerin. We generated and characterized induced pluripotent stem cells (iPSCs) from two EDMD1 patients bearing a mutation c.del153C and from one healthy donor. That mutation leads to generation of premature STOP codon. Established iPSCs are very valuable tool for disease pathogenesis investigation and for the development of new therapeutic methods after differentiation to cardiac or muscle cells. Obtained iPSCs show the proper morphology, pluripotency markers expression, normal karyotype and potential to differentiate into three germ layers.
    Keywords Biology (General) ; QH301-705.5
    Language English
    Publishing date 2021-08-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Hutchinson-Gilford Progeria Syndrome—Current Status and Prospects for Gene Therapy Treatment

    Katarzyna Piekarowicz / Magdalena Machowska / Volha Dzianisava / Ryszard Rzepecki

    Cells, Vol 8, Iss 2, p

    2019  Volume 88

    Abstract: Hutchinson-Gilford progeria syndrome (HGPS) is one of the most severe disorders among laminopathies—a heterogeneous group of genetic diseases with a molecular background based on mutations in the LMNA gene and genes coding for interacting proteins. HGPS ... ...

    Abstract Hutchinson-Gilford progeria syndrome (HGPS) is one of the most severe disorders among laminopathies—a heterogeneous group of genetic diseases with a molecular background based on mutations in the LMNA gene and genes coding for interacting proteins. HGPS is characterized by the presence of aging-associated symptoms, including lack of subcutaneous fat, alopecia, swollen veins, growth retardation, age spots, joint contractures, osteoporosis, cardiovascular pathology, and death due to heart attacks and strokes in childhood. LMNA codes for two major, alternatively spliced transcripts, give rise to lamin A and lamin C proteins. Mutations in the LMNA gene alone, depending on the nature and location, may result in the expression of abnormal protein or loss of protein expression and cause at least 11 disease phenotypes, differing in severity and affected tissue. LMNA gene-related HGPS is caused by a single mutation in the LMNA gene in exon 11. The mutation c.1824C > T results in activation of the cryptic donor splice site, which leads to the synthesis of progerin protein lacking 50 amino acids. The accumulation of progerin is the reason for appearance of the phenotype. In this review, we discuss current knowledge on the molecular mechanisms underlying the development of HGPS and provide a critical analysis of current research trends in this field. We also discuss the mouse models available so far, the current status of treatment of the disease, and future prospects for the development of efficient therapies, including gene therapy for HGPS.
    Keywords HGPS ; laminopathy ; lamin A/C ; progerin ; gene therapy ; miR9 ; Biology (General) ; QH301-705.5
    Subject code 572
    Language English
    Publishing date 2019-01-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Regulation of lamin properties and functions

    Magdalena Machowska / Katarzyna Piekarowicz / Ryszard Rzepecki

    Open Biology, Vol 5, Iss

    does phosphorylation do it all?

    2015  Volume 11

    Abstract: The main functions of lamins are their mechanical and structural roles as major building blocks of the karyoskeleton. They are also involved in chromatin structure regulation, gene expression, intracellular signalling pathway modulation and development. ... ...

    Abstract The main functions of lamins are their mechanical and structural roles as major building blocks of the karyoskeleton. They are also involved in chromatin structure regulation, gene expression, intracellular signalling pathway modulation and development. All essential lamin functions seem to depend on their capacity for assembly or disassembly after the receipt of specific signals, and after specific, selective and precisely regulated interactions through their various domains. Reversible phosphorylation of lamins is crucial for their functions, so it is important to understand how lamin polymerization and interactions are modulated, and which sequences may undergo such modifications. This review combines experimental data with results of our in silico analyses focused on lamin phosphorylation in model organisms to show the presence of evolutionarily conserved sequences and to indicate specific in vivo phosphorylations that affect particular functions.
    Keywords nuclear envelope ; lamin polymerization ; chromatin binding ; kinase motif ; cdk1/pka/pkc ; signalling ; Biology (General) ; QH301-705.5
    Subject code 570
    Language English
    Publishing date 2015-01-01T00:00:00Z
    Publisher The Royal Society
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article: The effect of the lamin A and its mutants on nuclear structure, cell proliferation, protein stability, and mobility in embryonic cells

    Piekarowicz, Katarzyna / Magdalena Machowska / Ewelina Dratkiewicz / Daria Lorek / Agnieszka Madej-Pilarczyk / Ryszard Rzepecki

    Chromosoma. 2017 Aug., v. 126, no. 4

    2017  

    Abstract: LMNA gene encodes for nuclear intermediate filament proteins lamin A/C. Mutations in this gene lead to a spectrum of genetic disorders, collectively referred to as laminopathies. Lamin A/C are widely expressed in most differentiated somatic cells but not ...

    Abstract LMNA gene encodes for nuclear intermediate filament proteins lamin A/C. Mutations in this gene lead to a spectrum of genetic disorders, collectively referred to as laminopathies. Lamin A/C are widely expressed in most differentiated somatic cells but not in early embryos and some undifferentiated cells. To investigate the role of lamin A/C in cell phenotype maintenance and differentiation, which could be a determinant of the pathogenesis of laminopathies, we examined the role played by exogenous lamin A and its mutants in differentiated cell lines (HeLa, NHDF) and less-differentiated HEK 293 cells. We introduced exogenous wild-type and mutated (H222P, L263P, E358K D446V, and ∆50) lamin A into different cell types and analyzed proteins’ impact on proliferation, protein mobility, and endogenous nuclear envelope protein distribution. The mutants give rise to a broad spectrum of nuclear phenotypes and relocate lamin C. The mutations ∆50 and D446V enhance proliferation in comparison to wild-type lamin A and control cells, but no changes in exogenous protein mobility measured by FRAP were observed. Interestingly, although transcripts for lamins A and C are at similar level in HEK 293 cells, only lamin C protein is detected in western blots. Also, exogenous lamin A and its mutants, when expressed in HEK 293 cells underwent posttranscriptional processing. Overall, our results provide new insight into the maintenance of lamin A in less-differentiated cells. Embryonic cells are very sensitive to lamin A imbalance, and its upregulation disturbs lamin C, which may influence gene expression and many regulatory pathways.
    Keywords Western blotting ; cell proliferation ; gene expression ; gene expression regulation ; genes ; genetic disorders ; intermediate filament proteins ; mutants ; mutation ; nuclear membrane ; pathogenesis ; phenotype ; somatic cells
    Language English
    Dates of publication 2017-08
    Size p. 501-517.
    Publishing place Springer Berlin Heidelberg
    Document type Article
    ZDB-ID 203083-4
    ISSN 1432-0886 ; 0009-5915
    ISSN (online) 1432-0886
    ISSN 0009-5915
    DOI 10.1007/s00412-016-0610-9
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  5. Article ; Online: The different function of single phosphorylation sites of Drosophila melanogaster lamin Dm and lamin C.

    Magdalena Zaremba-Czogalla / Katarzyna Piekarowicz / Katarzyna Wachowicz / Katarzyna Kozioł / Magda Dubińska-Magiera / Ryszard Rzepecki

    PLoS ONE, Vol 7, Iss 2, p e

    2012  Volume 32649

    Abstract: Lamins' functions are regulated by phosphorylation at specific sites but our understanding of the role of such modifications is practically limited to the function of cdc 2 (cdk1) kinase sites in depolymerization of the nuclear lamina during mitosis. In ... ...

    Abstract Lamins' functions are regulated by phosphorylation at specific sites but our understanding of the role of such modifications is practically limited to the function of cdc 2 (cdk1) kinase sites in depolymerization of the nuclear lamina during mitosis. In our study we used Drosophila lamin Dm (B-type) to examine the function of particular phosphorylation sites using pseudophosphorylated mutants mimicking single phosphorylation at experimentally confirmed in vivo phosphosites (S(25)E, S(45)E, T(435)E, S(595)E). We also analyzed lamin C (A-type) and its mutant S(37)E representing the N-terminal cdc2 (mitotic) site as well as lamin Dm R(64)H mutant as a control, non-polymerizing lamin. In the polymerization assay we could observe different effects of N-terminal cdc2 site pseudophosphorylation on A- and B-type lamins: lamin Dm S(45)E mutant was insoluble, in contrast to lamin C S(37)E. Lamin Dm T(435)E (C-terminal cdc2 site) and R(64)H were soluble in vitro. We also confirmed that none of the single phosphorylation site modifications affected the chromatin binding of lamin Dm, in contrast to the lamin C N-terminal cdc2 site. In vivo, all lamin Dm mutants were incorporated efficiently into the nuclear lamina in transfected Drosophila S2 and HeLa cells, although significant amounts of S(45)E and T(435)E were also located in cytoplasm. When farnesylation incompetent mutants were expressed in HeLa cells, lamin Dm T(435)E was cytoplasmic and showed higher mobility in FRAP assay.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2012-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article: Xenopus LAP2β protein knockdown affects location of lamin B and nucleoporins and has effect on assembly of cell nucleus and cell viability

    Dubińska-Magiera, Magda / Magdalena Chmielewska / Katarzyna Kozioł / Magdalena Machowska / Christopher J. Hutchison / Martin W. Goldberg / Ryszard Rzepecki

    Protoplasma. 2016 May, v. 253, no. 3

    2016  

    Abstract: Xenopus LAP2β protein is the single isoform expressed in XTC cells. The protein localizes on heterochromatin clusters both at the nuclear envelope and inside a cell nucleus. The majority of XLAP2β fraction neither colocalizes with TPX2 protein during ... ...

    Abstract Xenopus LAP2β protein is the single isoform expressed in XTC cells. The protein localizes on heterochromatin clusters both at the nuclear envelope and inside a cell nucleus. The majority of XLAP2β fraction neither colocalizes with TPX2 protein during interphase nor can be immunoprecipitated with XLAP2β antibody. Knockdown of the XLAP2β protein expression in XTC cells by synthetic siRNA and plasmid encoded siRNA resulted in nuclear abnormalities including changes in shape of nuclei, abnormal chromatin structure, loss of nuclear envelope, mislocalization of integral membrane proteins of INM such as lamin B2, mislocalization of nucleoporins, and cell death. Based on timing of cell death, we suggest mechanism associated with nucleus reassembly or with entry into mitosis. This confirms that Xenopus LAP2 protein is essential for the maintenance of cell nucleus integrity and the process of its reassembly after mitosis.
    Keywords Xenopus ; antibodies ; artificial cells ; cell death ; cell viability ; heterochromatin ; interphase ; mitosis ; nuclear membrane ; nucleoporins ; plasmids ; protein synthesis ; small interfering RNA
    Language English
    Dates of publication 2016-05
    Size p. 943-956.
    Publishing place Springer Vienna
    Document type Article
    ZDB-ID 123809-7
    ISSN 1615-6102 ; 0033-183X
    ISSN (online) 1615-6102
    ISSN 0033-183X
    DOI 10.1007/s00709-015-0861-y
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  7. Article: Xenopus LAP2β protein knockdown affects location of lamin B and nucleoporins and has effect on assembly of cell nucleus and cell viability

    Dubińska-Magiera, Magda / Magdalena Chmielewska / Katarzyna Kozioł / Magdalena Machowska / Christopher J. Hutchison / Martin W. Goldberg / Ryszard Rzepecki

    Protoplasma

    Volume v. 253,, Issue no. 3

    Abstract: Xenopus LAP2β protein is the single isoform expressed in XTC cells. The protein localizes on heterochromatin clusters both at the nuclear envelope and inside a cell nucleus. The majority of XLAP2β fraction neither colocalizes with TPX2 protein during ... ...

    Abstract Xenopus LAP2β protein is the single isoform expressed in XTC cells. The protein localizes on heterochromatin clusters both at the nuclear envelope and inside a cell nucleus. The majority of XLAP2β fraction neither colocalizes with TPX2 protein during interphase nor can be immunoprecipitated with XLAP2β antibody. Knockdown of the XLAP2β protein expression in XTC cells by synthetic siRNA and plasmid encoded siRNA resulted in nuclear abnormalities including changes in shape of nuclei, abnormal chromatin structure, loss of nuclear envelope, mislocalization of integral membrane proteins of INM such as lamin B2, mislocalization of nucleoporins, and cell death. Based on timing of cell death, we suggest mechanism associated with nucleus reassembly or with entry into mitosis. This confirms that Xenopus LAP2 protein is essential for the maintenance of cell nucleus integrity and the process of its reassembly after mitosis.
    Language English
    Document type Article
    ISSN 0033-183X
    Database AGRIS - International Information System for the Agricultural Sciences and Technology

    More links

    Kategorien

To top