LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: Roles of Matrix Metalloproteinases and Their Natural Inhibitors in Metabolism

    Sébastien Molière / Amélie Jaulin / Catherine-Laure Tomasetto / Nassim Dali-Youcef

    International Journal of Molecular Sciences, Vol 24, Iss 10649, p

    Insights into Health and Disease

    2023  Volume 10649

    Abstract: Matrix metalloproteinases (MMPs) are a family of zinc-activated peptidases that can be classified into six major classes, including gelatinases, collagenases, stromelysins, matrilysins, membrane type metalloproteinases, and other unclassified MMPs. The ... ...

    Abstract Matrix metalloproteinases (MMPs) are a family of zinc-activated peptidases that can be classified into six major classes, including gelatinases, collagenases, stromelysins, matrilysins, membrane type metalloproteinases, and other unclassified MMPs. The activity of MMPs is regulated by natural inhibitors called tissue inhibitors of metalloproteinases (TIMPs). MMPs are involved in a wide range of biological processes, both in normal physiological conditions and pathological states. While some of these functions occur during development, others occur in postnatal life. Although the roles of several MMPs have been extensively studied in cancer and inflammation, their function in metabolism and metabolic diseases have only recently begun to be uncovered, particularly over the last two decades. This review aims to summarize the current knowledge regarding the metabolic roles of metalloproteinases in physiology, with a strong emphasis on adipose tissue homeostasis, and to highlight the consequences of impaired or exacerbated MMP actions in the development of metabolic disorders such as obesity, fatty liver disease, and type 2 diabetes.
    Keywords metabolism ; MMP ; TIMP ; adipose tissue ; obesity ; insulin resistance ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 610
    Language English
    Publishing date 2023-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Pretherapeutic Imaging for Axillary Staging in Breast Cancer

    Morwenn Le Boulc’h / Julia Gilhodes / Zara Steinmeyer / Sébastien Molière / Carole Mathelin

    Journal of Clinical Medicine, Vol 10, Iss 1543, p

    A Systematic Review and Meta-Analysis of Ultrasound, MRI and FDG PET

    2021  Volume 1543

    Abstract: Background: This systematic review aimed at comparing performances of ultrasonography (US), magnetic resonance imaging (MRI), and fluorodeoxyglucose positron emission tomography (PET) for axillary staging, with a focus on micro- or micrometastases. ... ...

    Abstract Background: This systematic review aimed at comparing performances of ultrasonography (US), magnetic resonance imaging (MRI), and fluorodeoxyglucose positron emission tomography (PET) for axillary staging, with a focus on micro- or micrometastases. Methods: A search for relevant studies published between January 2002 and March 2018 was conducted in MEDLINE database. Study quality was assessed using the QUality Assessment of Diagnostic Accuracy Studies checklist. Sensitivity and specificity were meta-analyzed using a bivariate random effects approach; Results: Across 62 studies ( n = 10,374 patients), sensitivity and specificity to detect metastatic ALN were, respectively, 51% (95% CI: 43–59%) and 100% (95% CI: 99–100%) for US, 83% (95% CI:72–91%) and 85% (95% CI:72–92%) for MRI, and 49% (95% CI:39–59%) and 94% (95% CI:91–96%) for PET. Interestingly, US detects a significant proportion of macrometastases (false negative rate was 0.28 (0.22, 0.34) for more than 2 metastatic ALN and 0.96 (0.86, 0.99) for micrometastases). In contrast, PET tends to detect a significant proportion of micrometastases (true positive rate = 0.41 (0.29, 0.54)). Data are not available for MRI. Conclusions: In comparison with MRI and PET Fluorodeoxyglucose (FDG), US is an effective technique for axillary triage, especially to detect high metastatic burden without upstaging majority of micrometastases.
    Keywords meta-analysis ; ultrasound ; magnetic resonance imaging ; positron emission tomography ; breast cancer ; lymph node ; Medicine ; R
    Subject code 610
    Language English
    Publishing date 2021-04-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Quantitative background parenchymal enhancement to predict recurrence after neoadjuvant chemotherapy for breast cancer

    Sebastien Moliere / Isabelle Oddou / Vincent Noblet / Francis Veillon / Carole Mathelin

    Scientific Reports, Vol 9, Iss 1, Pp 1-

    2019  Volume 8

    Abstract: Abstract Breast background parenchymal enhancement (BPE) is an increasingly studied MRI parameter that reflects the microvasculature of normal breast tissue, which has been shown to change during neoadjuvant chemotherapy (NAC) for breast cancer. We aimed ...

    Abstract Abstract Breast background parenchymal enhancement (BPE) is an increasingly studied MRI parameter that reflects the microvasculature of normal breast tissue, which has been shown to change during neoadjuvant chemotherapy (NAC) for breast cancer. We aimed at evaluating the BPE in patients undergoing NAC and its prognostic value to predict recurrence. MRI BPE was visually and quantitatively evaluated before and after NAC in a retrospective cohort of 102 women with unilateral biopsy-proven invasive breast cancer. Pre-therapeutic BPE was not predictive of pathological response or recurrence. Quantitative post-therapeutic BPE was significantly decreased compared to pre-therapeutic value. Post-therapeutic quantitative BPE significantly predicted recurrence (HR = 6.38 (0.71, 12.06), p < 0.05).
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2019-12-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top