LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 1 of total 1

Search options

Article ; Online: Cancer lineage-specific regulation of YAP responsive elements revealed through large-scale functional epigenomic screens

Inês A. M. Barbosa / Rajaraman Gopalakrishnan / Samuele Mercan / Thanos P. Mourikis / Typhaine Martin / Simon Wengert / Caibin Sheng / Fei Ji / Rui Lopes / Judith Knehr / Marc Altorfer / Alicia Lindeman / Carsten Russ / Ulrike Naumann / Javad Golji / Kathleen Sprouffske / Louise Barys / Luca Tordella / Dirk Schübeler /
Tobias Schmelzle / Giorgio G. Galli

Nature Communications, Vol 14, Iss 1, Pp 1-

2023  Volume 15

Abstract: Abstract YAP is a key transcriptional co-activator of TEADs, it regulates cell growth and is frequently activated in cancer. In Malignant Pleural Mesothelioma (MPM), YAP is activated by loss-of-function mutations in upstream components of the Hippo ... ...

Abstract Abstract YAP is a key transcriptional co-activator of TEADs, it regulates cell growth and is frequently activated in cancer. In Malignant Pleural Mesothelioma (MPM), YAP is activated by loss-of-function mutations in upstream components of the Hippo pathway, while, in Uveal Melanoma (UM), YAP is activated in a Hippo-independent manner. To date, it is unclear if and how the different oncogenic lesions activating YAP impact its oncogenic program, which is particularly relevant for designing selective anti-cancer therapies. Here we show that, despite YAP being essential in both MPM and UM, its interaction with TEAD is unexpectedly dispensable in UM, limiting the applicability of TEAD inhibitors in this cancer type. Systematic functional interrogation of YAP regulatory elements in both cancer types reveals convergent regulation of broad oncogenic drivers in both MPM and UM, but also strikingly selective programs. Our work reveals unanticipated lineage-specific features of the YAP regulatory network that provide important insights to guide the design of tailored therapeutic strategies to inhibit YAP signaling across different cancer types.
Keywords Science ; Q
Language English
Publishing date 2023-07-01T00:00:00Z
Publisher Nature Portfolio
Document type Article ; Online
Database BASE - Bielefeld Academic Search Engine (life sciences selection)

More links

Kategorien

To top