LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: The Role of Bacteria–Mitochondria Communication in the Activation of Neuronal Innate Immunity

    João D. Magalhães / Ana Raquel Esteves / Emanuel Candeias / Diana F. Silva / Nuno Empadinhas / Sandra Morais Cardoso

    International Journal of Molecular Sciences, Vol 24, Iss 4339, p

    Implications to Parkinson’s Disease

    2023  Volume 4339

    Abstract: Mitochondria play a key role in regulating host metabolism, immunity and cellular homeostasis. Remarkably, these organelles are proposed to have evolved from an endosymbiotic association between an alphaproteobacterium and a primitive eukaryotic host ... ...

    Abstract Mitochondria play a key role in regulating host metabolism, immunity and cellular homeostasis. Remarkably, these organelles are proposed to have evolved from an endosymbiotic association between an alphaproteobacterium and a primitive eukaryotic host cell or an archaeon. This crucial event determined that human cell mitochondria share some features with bacteria, namely cardiolipin, N-formyl peptides, mtDNA and transcription factor A, that can act as mitochondrial-derived damage-associated molecular patterns (DAMPs). The impact of extracellular bacteria on the host act largely through the modulation of mitochondrial activities, and often mitochondria are themselves immunogenic organelles that can trigger protective mechanisms through DAMPs mobilization. In this work, we demonstrate that mesencephalic neurons exposed to an environmental alphaproteobacterium activate innate immunity through toll-like receptor 4 and Nod-like receptor 3. Moreover, we show that mesencephalic neurons increase the expression and aggregation of alpha-synuclein that interacts with mitochondria, leading to their dysfunction. Mitochondrial dynamic alterations also affect mitophagy which favors a positive feedback loop on innate immunity signaling. Our results help to elucidate how bacteria and neuronal mitochondria interact and trigger neuronal damage and neuroinflammation and allow us to discuss the role of bacterial-derived pathogen-associated molecular patterns (PAMPs) in Parkinson’s disease etiology.
    Keywords mitochondria ; alphaproteobacteria ; innate immunity ; antimicrobial peptides ; α-Synuclein ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 571
    Language English
    Publishing date 2023-02-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Macroautophagy and Mitophagy in Neurodegenerative Disorders

    João Duarte Magalhães / Lígia Fão / Rita Vilaça / Sandra Morais Cardoso / Ana Cristina Rego

    Biomedicines, Vol 9, Iss 1625, p

    Focus on Therapeutic Interventions

    2021  Volume 1625

    Abstract: Macroautophagy, a quality control mechanism, is an evolutionarily conserved pathway of lysosomal degradation of protein aggregates, pathogens, and damaged organelles. As part of its vital homeostatic role, macroautophagy deregulation is associated with ... ...

    Abstract Macroautophagy, a quality control mechanism, is an evolutionarily conserved pathway of lysosomal degradation of protein aggregates, pathogens, and damaged organelles. As part of its vital homeostatic role, macroautophagy deregulation is associated with various human disorders, including neurodegenerative diseases. There are several lines of evidence that associate protein misfolding and mitochondrial dysfunction in the etiology of Alzheimer’s, Parkinson’s, and Huntington’s diseases. Macroautophagy has been implicated in the degradation of different protein aggregates such as Aβ, tau, alpha-synuclein (α-syn), and mutant huntingtin (mHtt) and in the clearance of dysfunctional mitochondria. Taking these into consideration, targeting autophagy might represent an effective therapeutic strategy to eliminate protein aggregates and to improve mitochondrial function in these disorders. The present review describes our current understanding on the role of macroautophagy in neurodegenerative disorders and focuses on possible strategies for its therapeutic modulation.
    Keywords neurodegenerative disorders ; autophagy ; mitophagy mitochondrial dysfunction ; mutant proteins ; therapeutic strategies ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2021-11-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top