LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 9 of total 9

Search options

  1. Article ; Online: Lipidomic Profiling of Bronchoalveolar Lavage Fluid Extracellular Vesicles Indicates Their Involvement in Lipopolysaccharide-Induced Acute Lung Injury

    Teja Srinivas Nirujogi / Sainath R. Kotha / Sangwoon Chung / Brenda F. Reader / Anita Yenigalla / Liwen Zhang / John P. Shapiro / Jon Wisler / John W. Christman / Krishnarao Maddipati / Narasimham L. Parinandi / Manjula Karpurapu

    Journal of Innate Immunity, Pp 1-

    2022  Volume 14

    Abstract: Emerging data support the pivotal role of extracellular vesicles (EVs) in normal cellular physiology and disease conditions. However, despite their abundance, there is much less information about the lipid mediators carried in EVs, especially in the ... ...

    Abstract Emerging data support the pivotal role of extracellular vesicles (EVs) in normal cellular physiology and disease conditions. However, despite their abundance, there is much less information about the lipid mediators carried in EVs, especially in the context of acute lung injury (ALI). Our data demonstrate that C57BL/6 mice subjected to intranasal Escherichia coli lipopolysaccharide (LPS)-induced ALI release, a higher number of EVs into the alveolar space, compared to saline-treated controls. EVs released during ALI originated from alveolar epithelial cells, macrophages, and neutrophils and carry a diverse array of lipid mediators derived from ω-3 and ω-6 polyunsaturated fatty acids (PUFA). The eicosanoids in EVs correlated with cellular levels of arachidonic acid, expression of cytosolic phospholipase A2, cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome epoxygenase p450 proteins in pulmonary macrophages. Furthermore, EVs from LPS-toll-like receptor 4 knockout (TLR4-/-) mice contained significantly lower amounts of COX and LOX catalyzed eicosanoids and ω-3 PUFA metabolites. More importantly, EVs from LPS-treated wild-type mice increased TNF-α release by macrophages and reduced alveolar epithelial monolayer barrier integrity compared to EVs from LPS-treated TLR4−/− mice. In summary, our study demonstrates for the first time that the EV carried PUFA metabolite profile in part depends on the inflammatory status of the lung macrophages and modulates pulmonary macrophage and alveolar epithelial cell function during LPS-induced ALI.
    Keywords acute lung injury ; inflammation ; extracellular vesicles ; polyunsaturated fatty acids ; macrophage ; Medicine ; R ; Internal medicine ; RC31-1245
    Subject code 610
    Language English
    Publishing date 2022-04-01T00:00:00Z
    Publisher Karger Publishers
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Lung mitochondrial DNA copy number, inflammatory biomarkers, gene transcription and gene methylation in vapers and smokers

    Kellie M. Mori / Joseph P. McElroy / Daniel Y. Weng / Sangwoon Chung / Paolo Fadda / Sarah A. Reisinger / Kevin L. Ying / Theodore M. Brasky / Mark D. Wewers / Jo L. Freudenheim / Peter G. Shields / Min-Ae Song

    EBioMedicine, Vol 85, Iss , Pp 104301- (2022)

    2022  

    Abstract: Summary: Background: Mitochondrial DNA copy number (mtCN) maintains cellular function and homeostasis, and is linked to nuclear DNA methylation and gene expression. Increased mtCN in the blood is associated with smoking and respiratory disease, but has ... ...

    Abstract Summary: Background: Mitochondrial DNA copy number (mtCN) maintains cellular function and homeostasis, and is linked to nuclear DNA methylation and gene expression. Increased mtCN in the blood is associated with smoking and respiratory disease, but has received little attention for target organ effects for smoking or electronic cigarette (EC) use. Methods: Bronchoscopy biospecimens from healthy EC users, smokers (SM), and never-smokers (NS) were assessed for associations of mtCN with mtDNA point mutations, immune responses, nuclear DNA methylation and gene expression using linear regression. Ingenuity pathway analysis was used for enriched pathways. GEO and TCGA respiratory disease datasets were used to explore the involvement of mtCN-associated signatures. Findings: mtCN was higher in SM than NS, but EC was not statistically different from either. Overall there was a negative association of mtCN with a point mutation in the D-loop but no difference within groups. Positive associations of mtCN with IL-2 and IL-4 were found in EC only. mtCN was significantly associated with 71,487 CpGs and 321 transcripts. 263 CpGs were correlated with nearby transcripts for genes enriched in the immune system. EC-specific mtCN-associated-CpGs and genes were differentially expressed in respiratory diseases compared to controls, including genes involved in cellular movement, inflammation, metabolism, and airway hyperresponsiveness. Interpretation: Smoking may elicit a lung toxic effect through mtCN. While the impact of EC is less clear, EC-specific associations of mtCN with nuclear biomarkers suggest exposure may not be harmless. Further research is needed to understand the role of smoking and EC-related mtCN on lung disease risks. Funding: The National Cancer Institute, the National Heart, Lung, and Blood Institute, the Food and Drug Administration Center for Tobacco Products, the National Center For Advancing Translational Sciences, and Pelotonia Intramural Research Funds.
    Keywords Mitochondria copy numbers ; Smokers ; Vaping ; DNA methylation ; Gene expression ; Inflammation ; Medicine ; R ; Medicine (General) ; R5-920
    Subject code 610
    Language English
    Publishing date 2022-11-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: PolyADP-Ribosylation of NFATc3 and NF-κB Transcription Factors Modulate Macrophage Inflammatory Gene Expression in LPS-Induced Acute Lung Injury

    Yunjuan Nie / Teja Srinivas Nirujogi / Ravi Ranjan / Brenda F. Reader / Sangwoon Chung / Megan N. Ballinger / Joshua A. Englert / John W. Christman / Manjula Karpurapu

    Journal of Innate Immunity, Pp 1-

    2020  Volume 11

    Abstract: Pulmonary macrophages play a critical role in the recognition of pathogens, initiation of host defense via inflammation, clearance of pathogens from the airways, and resolution of inflammation. Recently, we have shown a pivotal role for the nuclear ... ...

    Abstract Pulmonary macrophages play a critical role in the recognition of pathogens, initiation of host defense via inflammation, clearance of pathogens from the airways, and resolution of inflammation. Recently, we have shown a pivotal role for the nuclear factor of activated T-cell cytoplasmic member 3 (NFATc3) transcription factor in modulating pulmonary macrophage function in LPS-induced acute lung injury (ALI) pathogenesis. Although the NFATc proteins are activated primarily by calcineurin-dependent dephosphorylation, here we show that LPS induces posttranslational modification of NFATc3 by polyADP-ribose polymerase 1 (PARP-1)-mediated polyADP-ribosylation. ADP-ribosylated NFATc3 showed increased binding to iNOS and TNFα promoter DNA, thereby increasing downstream gene expression. Inhibitors of PARP-1 decreased LPS-induced NFATc3 ribosylation, target gene promoter binding, and gene expression. LPS increased NFAT luciferase reporter activity in lung macrophages and lung tissue that was inhibited by pretreatment with PARP-1 inhibitors. More importantly, pretreatment of mice with the PARP-1 inhibitor olaparib markedly decreased LPS-induced cytokines, protein extravasation in bronchoalveolar fluid, lung wet-to-dry ratios, and myeloperoxidase activity. Furthermore, PARP-1 inhibitors decreased NF-кB luciferase reporter activity and LPS-induced ALI in NF-кB reporter mice. Thus, our study demonstrates that inhibiting NFATc3 and NF-кB polyADP-ribosylation with PARP-1 inhibitors prevented LPS-induced ALI pathogenesis.
    Keywords macrophage ; polyadp-ribose polymerase 1 ; nfatc3 ; acute lung injury ; pulmonary edema ; Medicine ; R ; Internal medicine ; RC31-1245
    Language English
    Publishing date 2020-10-01T00:00:00Z
    Publisher Karger Publishers
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: MicroRNA-138 suppresses glioblastoma proliferation through downregulation of CD44

    Margaret Yeh / Yin-Ying Wang / Ji Young Yoo / Christina Oh / Yoshihiro Otani / Jin Muk Kang / Eun S. Park / Eunhee Kim / Sangwoon Chung / Young-Jun Jeon / George A. Calin / Balveen Kaur / Zhongming Zhao / Tae Jin Lee

    Scientific Reports, Vol 11, Iss 1, Pp 1-

    2021  Volume 11

    Abstract: Abstract Tumor suppressive microRNAs (miRNAs) are increasingly implicated in the development of anti-tumor therapy by reprogramming gene network that are aberrantly regulated in cancer cells. This study aimed to determine the therapeutic potential of ... ...

    Abstract Abstract Tumor suppressive microRNAs (miRNAs) are increasingly implicated in the development of anti-tumor therapy by reprogramming gene network that are aberrantly regulated in cancer cells. This study aimed to determine the therapeutic potential of putative tumor suppressive miRNA, miR-138, against glioblastoma (GBM). Whole transcriptome and miRNA expression profiling analyses on human GBM patient tissues identified miR-138 as one of the significantly downregulated miRNAs with an inverse correlation with CD44 expression. Transient overexpression of miR-138 in GBM cells inhibited cell proliferation, cell cycle, migration, and wound healing capability. We unveiled that miR-138 negatively regulates the expression of CD44 by directly binding to the 3′ UTR of CD44. CD44 inhibition by miR-138 resulted in an inhibition of glioblastoma cell proliferation in vitro through cell cycle arrest as evidenced by a significant induction of p27 and its translocation into nucleus. Ectopic expression of miR-138 also increased survival rates in mice that had an intracranial xenograft tumor derived from human patient-derived primary GBM cells. In conclusion, we demonstrated a therapeutic potential of tumor suppressive miR-138 through direct downregulation of CD44 for the treatment of primary GBM.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2021-04-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: A kinome-wide screen identifies a CDKL5-SOX9 regulatory axis in epithelial cell death and kidney injury

    Ji Young Kim / Yuntao Bai / Laura A. Jayne / Ralph D. Hector / Avinash K. Persaud / Su Sien Ong / Shreshtha Rojesh / Radhika Raj / Mei Ji He Ho Feng / Sangwoon Chung / Rachel E. Cianciolo / John W. Christman / Moray J. Campbell / David S. Gardner / Sharyn D. Baker / Alex Sparreboom / Rajgopal Govindarajan / Harpreet Singh / Taosheng Chen /
    Ming Poi / Katalin Susztak / Stuart R. Cobb / Navjot Singh Pabla

    Nature Communications, Vol 11, Iss 1, Pp 1-

    2020  Volume 15

    Abstract: Protein kinases have emerged as critical regulators of disease pathogenesis. Here, the authors have utilized kinome-wide screening approaches to reveal a pathogenic role of CDKL5 kinase in acute kidney injury, which is dependent on suppression of a SOX9- ... ...

    Abstract Protein kinases have emerged as critical regulators of disease pathogenesis. Here, the authors have utilized kinome-wide screening approaches to reveal a pathogenic role of CDKL5 kinase in acute kidney injury, which is dependent on suppression of a SOX9-associated transcriptional network.
    Keywords Science ; Q
    Language English
    Publishing date 2020-04-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: A kinome-wide screen identifies a CDKL5-SOX9 regulatory axis in epithelial cell death and kidney injury

    Ji Young Kim / Yuntao Bai / Laura A. Jayne / Ralph D. Hector / Avinash K. Persaud / Su Sien Ong / Shreshtha Rojesh / Radhika Raj / Mei Ji He Ho Feng / Sangwoon Chung / Rachel E. Cianciolo / John W. Christman / Moray J. Campbell / David S. Gardner / Sharyn D. Baker / Alex Sparreboom / Rajgopal Govindarajan / Harpreet Singh / Taosheng Chen /
    Ming Poi / Katalin Susztak / Stuart R. Cobb / Navjot Singh Pabla

    Nature Communications, Vol 11, Iss 1, Pp 1-

    2020  Volume 15

    Abstract: Protein kinases have emerged as critical regulators of disease pathogenesis. Here, the authors have utilized kinome-wide screening approaches to reveal a pathogenic role of CDKL5 kinase in acute kidney injury, which is dependent on suppression of a SOX9- ... ...

    Abstract Protein kinases have emerged as critical regulators of disease pathogenesis. Here, the authors have utilized kinome-wide screening approaches to reveal a pathogenic role of CDKL5 kinase in acute kidney injury, which is dependent on suppression of a SOX9-associated transcriptional network.
    Keywords Science ; Q
    Language English
    Publishing date 2020-04-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Krüppel like factor 4 promoter undergoes active demethylation during monocyte/macrophage differentiation.

    Manjula Karpurapu / Ravi Ranjan / Jing Deng / Sangwoon Chung / Yong Gyu Lee / Lei Xiao / Teja Srinivas Nirujogi / Jeffrey R Jacobson / Gye Young Park / John W Christman

    PLoS ONE, Vol 9, Iss 4, p e

    2014  Volume 93362

    Abstract: The role of different lineage specific transcription factors in directing hematopoietic cell fate towards myeloid lineage is well established but the status of epigenetic modifications has not been defined during this important developmental process. We ... ...

    Abstract The role of different lineage specific transcription factors in directing hematopoietic cell fate towards myeloid lineage is well established but the status of epigenetic modifications has not been defined during this important developmental process. We used non proliferating, PU.1 inducible myeloid progenitor cells and differentiating bone marrow derived macrophages to study the PU.1 dependent KLF4 transcriptional regulation and its promoter demethylation during monocyte/macrophage differentiation. Expression of KLF4 was regulated by active demethylation of its promoter and PU.1 specifically bound to KLF4 promoter oligo harboring the PU.1 consensus sequence. Methylation specific quantitative PCR and Bisulfite sequencing indicated demethylation of CpG residues most proximal to the transcription start site of KLF4 promoter. Cloned KLF4 promoter in pGL3 Luciferase and CpG free pcpgf-bas vectors showed accentuated reporter activity when co-transfected with the PU.1 expression vector. In vitro methylation of both KLF4 promoter oligo and cloned KLF4 promoter vectors showed attenuated in vitro DNA binding activity and Luciferase/mouse Alkaline phosphotase reporter activity indicating the negative influence of KLF4 promoter methylation on PU.1 binding. The Cytosine deaminase, Activation Induced Cytidine Deaminase (AICDA) was found to be critical for KLF4 promoter demethylation. More importantly, knock down of AICDA resulted in blockade of KLF4 promoter demethylation, decreased F4/80 expression and other phenotypic characters of macrophage differentiation. Our data proves that AICDA mediated active demethylation of the KLF4 promoter is necessary for transcriptional regulation of KLF4 by PU.1 during monocyte/macrophage differentiation.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570 ; 572
    Language English
    Publishing date 2014-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Mitogen- and stress-activated kinase 1 (MSK1) regulates cigarette smoke-induced histone modifications on NF-κB-dependent genes.

    Isaac K Sundar / Sangwoon Chung / Jae-Woong Hwang / John D Lapek / Michael Bulger / Alan E Friedman / Hongwei Yao / James R Davie / Irfan Rahman

    PLoS ONE, Vol 7, Iss 2, p e

    2012  Volume 31378

    Abstract: Cigarette smoke (CS) causes sustained lung inflammation, which is an important event in the pathogenesis of chronic obstructive pulmonary disease (COPD). We have previously reported that IKKα (I kappaB kinase alpha) plays a key role in CS-induced pro- ... ...

    Abstract Cigarette smoke (CS) causes sustained lung inflammation, which is an important event in the pathogenesis of chronic obstructive pulmonary disease (COPD). We have previously reported that IKKα (I kappaB kinase alpha) plays a key role in CS-induced pro-inflammatory gene transcription by chromatin modifications; however, the underlying role of downstream signaling kinase is not known. Mitogen- and stress-activated kinase 1 (MSK1) serves as a specific downstream NF-κB RelA/p65 kinase, mediating transcriptional activation of NF-κB-dependent pro-inflammatory genes. The role of MSK1 in nuclear signaling and chromatin modifications is not known, particularly in response to environmental stimuli. We hypothesized that MSK1 regulates chromatin modifications of pro-inflammatory gene promoters in response to CS. Here, we report that CS extract activates MSK1 in human lung epithelial (H292 and BEAS-2B) cell lines, human primary small airway epithelial cells (SAEC), and in mouse lung, resulting in phosphorylation of nuclear MSK1 (Thr581), phospho-acetylation of RelA/p65 at Ser276 and Lys310 respectively. This event was associated with phospho-acetylation of histone H3 (Ser10/Lys9) and acetylation of histone H4 (Lys12). MSK1 N- and C-terminal kinase-dead mutants, MSK1 siRNA-mediated knock-down in transiently transfected H292 cells, and MSK1 stable knock-down mouse embryonic fibroblasts significantly reduced CS extract-induced MSK1, NF-κB RelA/p65 activation, and posttranslational modifications of histones. CS extract/CS promotes the direct interaction of MSK1 with RelA/p65 and p300 in epithelial cells and in mouse lung. Furthermore, CS-mediated recruitment of MSK1 and its substrates to the promoters of NF-κB-dependent pro-inflammatory genes leads to transcriptional activation, as determined by chromatin immunoprecipitation. Thus, MSK1 is an important downstream kinase involved in CS-induced NF-κB activation and chromatin modifications, which have implications in pathogenesis of COPD.
    Keywords Medicine ; R ; Science ; Q
    Subject code 571
    Language English
    Publishing date 2012-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: NF-κB inducing kinase, NIK mediates cigarette smoke/TNFα-induced histone acetylation and inflammation through differential activation of IKKs.

    Sangwoon Chung / Isaac K Sundar / Jae-Woong Hwang / Fiona E Yull / Timothy S Blackwell / Vuokko L Kinnula / Michael Bulger / Hongwei Yao / Irfan Rahman

    PLoS ONE, Vol 6, Iss 8, p e

    2011  Volume 23488

    Abstract: Nuclear factor (NF)-κB inducing kinase (NIK) is a central player in the non-canonical NF κB pathway, which phosphorylates IκB kinase α (IKKα) resulting in enhancement of target gene expression. We have recently shown that IKKα responds to a variety of ... ...

    Abstract Nuclear factor (NF)-κB inducing kinase (NIK) is a central player in the non-canonical NF κB pathway, which phosphorylates IκB kinase α (IKKα) resulting in enhancement of target gene expression. We have recently shown that IKKα responds to a variety of stimuli including oxidants and cigarette smoke (CS) regulating the histone modification in addition to its role in NF-κB activation. However, the primary signaling mechanism linking CS-mediated oxidative stress and TNFα with histone acetylation and pro-inflammatory gene transcription is not well understood. We hypothesized that CS and TNFα increase NIK levels causing phosphorylation of IKKα, which leads to histone acetylation.To test this hypothesis, we investigated whether NIK mediates effects of CS and TNFα on histone acetylation in human lung epithelial cells in vitro and in lungs of mouse exposed to CS in vivo. CS increased the phosphorylation levels of IKKα/NIK in lung epithelial cells and mouse lungs. NIK is accumulated in the nuclear compartment, and is recruited to the promoters of pro-inflammatory genes, to induce posttranslational acetylation of histones in response to CS and TNFα. Cells in which NIK is knocked down using siRNA showed partial attenuation of CSE- and TNFα-induced acetylation of histone H3 on pro-inflammatory gene promoters. Additional study to determine the role of IKKβ/NF-κB pathway in CS-induced histone acetylation suggests that the canonical pathway does not play a role in histone acetylation particularly in response to CS in mouse lungs.Overall, our findings provide a novel role for NIK in CS- and TNFα-induced histone acetylation, especially on histone H3K9.
    Keywords Medicine ; R ; Science ; Q
    Subject code 572 ; 570
    Language English
    Publishing date 2011-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top