LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 7 of total 7

Search options

  1. Article ; Online: Are fungicides a driver of European foulbrood disease in honey bee colonies pollinating blueberries?

    Jenna M. Thebeau / Allyssa Cloet / Dana Liebe / Fatima Masood / Ivanna V. Kozii / Colby D. Klein / Michael W. Zabrodski / Sarah Biganski / Igor Moshynskyy / Larhonda Sobchishin / Geoff Wilson / Maria Marta Guarna / Eric M. Gerbrandt / Antonio Ruzzini / Elemir Simko / Sarah C. Wood

    Frontiers in Ecology and Evolution, Vol

    2023  Volume 11

    Abstract: IntroductionBlueberry producers in Canada depend heavily on pollination services provided by honey bees (Apis mellifera L.). Anecdotal reports indicate an increased incidence of European foulbrood (EFB), a bacterial disease caused by Melissococcus ... ...

    Abstract IntroductionBlueberry producers in Canada depend heavily on pollination services provided by honey bees (Apis mellifera L.). Anecdotal reports indicate an increased incidence of European foulbrood (EFB), a bacterial disease caused by Melissococcus plutonius, is compromising pollination services and colony health. Fungicidal products are commonly used in blueberry production to prevent fungal diseases such as anthracnose and botrytis fruit rot. Pesticide exposure has been implicated in honey bee immunosuppression; however, the effects of commercial fungicidal products, commonly used during blueberry pollination, on honey bee larval susceptibility to EFB have not been investigated.MethodsUsing an in vitro infection model of EFB, we infected first instar honey bee larvae with M. plutonius 2019 BC1, a strain isolated from an EFB outbreak in British Columbia, Canada, and chronically exposed larvae to environmentally relevant concentrations of fungicide products over 6 days. Survival was monitored until pupation or eclosion.ResultsWe found that larvae chronically exposed to one, two, or three fungicidal products [Supra® Captan 80WDG (Captan), low concentration of Kenja™ 400SC (Kenja), Luna® Tranquility (Luna), and/or Switch® 62.5 WG (Switch)], did not significantly reduce survival from EFB relative to infected controls. When larvae were exposed to four fungicide products concurrently, we observed a significant 24.2% decrease in survival from M. plutonius infection (p = 0.0038). Similarly, higher concentrations of Kenja significantly reduced larval survival by 24.7–33.0% from EFB (p < 0.0001).DiscussionThese in vitro results suggest that fungicides may contribute to larval susceptibility and response to M. plutonius infections. Further testing of other pesticide combinations is warranted as well as continued surveillance of pesticide residues in blueberry-pollinating colonies.
    Keywords pesticides ; fungicides ; European foulbrood ; honey bees (Apis mellifera) ; blueberries ; Evolution ; QH359-425 ; Ecology ; QH540-549.5
    Language English
    Publishing date 2023-01-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Evaluating approved and alternative treatments against an oxytetracycline-resistant bacterium responsible for European foulbrood disease in honey bees

    Fatima Masood / Jenna M. Thebeau / Allyssa Cloet / Ivanna V. Kozii / Michael W. Zabrodski / Sarah Biganski / Jenny Liang / M. Marta Guarna / Elemir Simko / Antonio Ruzzini / Sarah C. Wood

    Scientific Reports, Vol 12, Iss 1, Pp 1-

    2022  Volume 9

    Abstract: Abstract European foulbrood (EFB) is a disease of honey bee larvae caused by Melissococcus plutonius. In North America, oxytetracycline (OTC) is approved to combat EFB disease though tylosin (TYL) and lincomycin (LMC) are also registered for use against ... ...

    Abstract Abstract European foulbrood (EFB) is a disease of honey bee larvae caused by Melissococcus plutonius. In North America, oxytetracycline (OTC) is approved to combat EFB disease though tylosin (TYL) and lincomycin (LMC) are also registered for use against American foulbrood disease. Herein, we report and characterize an OTC-resistant M. plutonius isolate from British Columbia, Canada, providing an antimicrobial sensitivity to the three approved antibiotics and studying their abilities to alter larval survival in an in vitro infection model. Specifically, we investigated OTC, TYL, and LMC as potential treatment options for EFB disease using laboratory-reared larvae infected with M. plutonius. The utility of the three antibiotics were compared through an experimental design that either mimicked metaphylaxis or antimicrobial intervention. At varying concentrations, all three antibiotics prevented clinical signs of EFB disease following infection with M. plutonius 2019BC1 in vitro. This included treatment with 100 μg/mL of OTC, a concentration that was ~ 3× the minimum inhibitory concentration measured to inhibit the strain in nutrient broth. Additionally, we noted high larval mortality in groups treated with doses of OTC corresponding to ~ 30× the dose required to eliminate bacterial growth in vitro. In contrast, TYL and LMC were not toxic to larvae at concentrations that exceed field use. As we continue to investigate antimicrobial resistance (AMR) profiles of M. plutonius from known EFB outbreaks, we expect a range of AMR phenotypes, reiterating the importance of expanding current therapeutic options along with alternative management practices to suppress this disease.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2022-04-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees.

    Sarah C Wood / Ivanna V Kozii / Roman V Koziy / Tasha Epp / Elemir Simko

    PLoS ONE, Vol 13, Iss 1, p e

    2018  Volume 0190517

    Abstract: Thiamethoxam, clothianidin, and imidacloprid are the most commonly used neonicotinoid insecticides on the Canadian prairies. There is widespread contamination of nectar and pollen with neonicotinoids, at concentrations which are sublethal for honey bees ( ...

    Abstract Thiamethoxam, clothianidin, and imidacloprid are the most commonly used neonicotinoid insecticides on the Canadian prairies. There is widespread contamination of nectar and pollen with neonicotinoids, at concentrations which are sublethal for honey bees (Apis mellifera Linnaeus).We compared the effects of chronic, sublethal exposure to the three most commonly used neonicotinoids on honey bee colonies established from New Zealand packaged bees using colony weight gain, brood area, and population size as measures of colony performance.From May 7 to July 29, 2016 (12 weeks), sixty-eight colonies received weekly feedings of sugar syrup and pollen patties containing 0 nM, 20 nM (median environmental dose), or 80 nM (high environmental dose) of one of three neonicotinoids (thiamethoxam, clothianidin, and imidacloprid). Colonies were weighed at three-week intervals. Brood area and population size were determined from digital images of colonies at week 12. Statistical analyses were performed by ANOVA and mixed models.There was a significant negative effect (-30%, p<0.01) on colony weight gain (honey production) after 9 and 12 weeks of exposure to 80 nM of thiamethoxam, clothianidin, or imidacloprid and on bee cluster size (-21%, p<0.05) after 12 weeks. Analysis of brood area and number of adult bees lacked adequate (>80%) statistical power to detect an effect.Chronic exposure of honey bees to high environmental doses of neonicotinoids has negative effects on honey production. Brood area appears to be less sensitive to detect sublethal effects of neonicotinoids.
    Keywords Medicine ; R ; Science ; Q
    Subject code 333
    Language English
    Publishing date 2018-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Comparison of individual hive and apiary-level sample types for spores of Paenibacillus larvae in Saskatchewan honey bee operations.

    Michael W Zabrodski / Jessica E DeBruyne / Geoff Wilson / Igor Moshynskyy / Mohsen Sharafi / Sarah C Wood / Ivanna V Kozii / Jenna Thebeau / Colby D Klein / Igor Medici de Mattos / LaRhonda Sobchishin / Tasha Epp / Antonio C Ruzzini / Elemir Simko

    PLoS ONE, Vol 17, Iss 2, p e

    2022  Volume 0263602

    Abstract: Three commercial honey bee operations in Saskatchewan, Canada, with outbreaks of American foulbrood (AFB) and recent or ongoing metaphylactic antibiotic use were intensively sampled to detect spores of Paenibacillus larvae during the summer of 2019. Here, ...

    Abstract Three commercial honey bee operations in Saskatchewan, Canada, with outbreaks of American foulbrood (AFB) and recent or ongoing metaphylactic antibiotic use were intensively sampled to detect spores of Paenibacillus larvae during the summer of 2019. Here, we compared spore concentrations in different sample types within individual hives, assessed the surrogacy potential of honey collected from honey supers in place of brood chamber honey or adult bees within hives, and evaluated the ability of pooled, extracted honey to predict the degree of spore contamination identified through individual hive testing. Samples of honey and bees from hives within apiaries with a recent, confirmed case of AFB in a single hive (index apiaries) and apiaries without clinical evidence of AFB (unaffected apiaries), as well as pooled, apiary-level honey samples from end-of-season extraction, were collected and cultured to detect and enumerate spores. Only a few hives were heavily contaminated by spores in any given apiary. All operations were different from one another with regard to both the overall degree of spore contamination across apiaries and the distribution of spores between index apiaries and unaffected apiaries. Within operations, individual hive spore concentrations in unaffected apiaries were significantly different from index apiaries in the brood chamber (BC) honey, honey super (HS) honey, and BC bees of one of three operations. Across all operations, BC honey was best for discriminating index apiaries from unaffected apiaries (p = 0.001), followed by HS honey (p = 0.06), and BC bees (p = 0.398). HS honey positively correlated with both BC honey (rs = 0.76, p < 0.0001) and bees (rs = 0.50, p < 0.0001) and may be useful as a surrogate for either. Spore concentrations in pooled, extracted honey seem to have predictive potential for overall spore contamination within each operation and may have prognostic value in assessing the risk of future AFB outbreaks at the apiary (or operation) level.
    Keywords Medicine ; R ; Science ; Q
    Subject code 580
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Establishment of apiary-level risk of American foulbrood through the detection of Paenibacillus larvae spores in pooled, extracted honey in Saskatchewan

    Michael W. Zabrodski / Tasha Epp / Geoff Wilson / Igor Moshynskyy / Mohsen Sharafi / Lara Reitsma / Mateo Castano Ospina / Jessica E. DeBruyne / Alexandra Wentzell / Sarah C. Wood / Ivanna V. Kozii / Colby D. Klein / Jenna Thebeau / LaRhonda Sobchishin / Antonio C. Ruzzini / Elemir Simko

    Scientific Reports, Vol 12, Iss 1, Pp 1-

    2022  Volume 13

    Abstract: Abstract Paenibacillus larvae, the causative agent of American foulbrood (AFB), produces spores that may be detectable within honey. We analyzed the spore content of pooled, extracted honey from 52 large-scale (L) and 64 small-scale (S) Saskatchewan ... ...

    Abstract Abstract Paenibacillus larvae, the causative agent of American foulbrood (AFB), produces spores that may be detectable within honey. We analyzed the spore content of pooled, extracted honey from 52 large-scale (L) and 64 small-scale (S) Saskatchewan beekeepers over a two-year period (2019–2020). Our objectives were: (i) establish reliable prognostic reference ranges for spore concentrations in extracted honey to determine future AFB risk at the apiary level; (ii) identify management practices as targets for mitigation of risk. P. larvae spores were detected in 753 of 1476 samples (51%). Beekeepers were stratified into low (< 2 spores/gram), moderate (2- < 100 spores/gram), and high (≥ 100 spores/gram) risk categories. Of forty-nine L beekeepers sampled in 2019, those that reported AFB in 2020 included 0/26 low, 3/18 moderate, and 3/5 high risk. Of twenty-seven L beekeepers sampled in 2020, those that reported AFB in 2021 included 0/11 low, 2/14 moderate, and 1/2 high risk. Predictive modelling included indoor overwintering of hives, purchase of used equipment, movement of honey-producing colonies between apiaries, beekeeper demographic, and antimicrobial use as risk category predictors. Saskatchewan beekeepers with fewer than 2 spores/gram in extracted honey that avoid high risk activities may be considered at low risk of AFB the following year.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2022-05-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: In Vitro Effects of Pesticides on European Foulbrood in Honeybee Larvae

    Sarah C. Wood / Jocelyne C. Chalifour / Ivanna V. Kozii / Igor Medici de Mattos / Colby D. Klein / Michael W. Zabrodski / Igor Moshynskyy / M. Marta Guarna / Patricia Wolf Veiga / Tasha Epp / Elemir Simko

    Insects, Vol 11, Iss 252, p

    2020  Volume 252

    Abstract: Neonicotinoid and fungicide exposure has been linked to immunosuppression and increased susceptibility to disease in honeybees ( Apis mellifera ). European foulbrood, caused by the bacterium Melissococcus plutonius , is a disease of honeybee larvae which ...

    Abstract Neonicotinoid and fungicide exposure has been linked to immunosuppression and increased susceptibility to disease in honeybees ( Apis mellifera ). European foulbrood, caused by the bacterium Melissococcus plutonius , is a disease of honeybee larvae which causes economic hardship for commercial beekeepers, in particular those whose colonies pollinate blueberries. We report for the first time in Canada, an atypical variant of M. plutonius isolated from a blueberry-pollinating colony. With this isolate, we used an in vitro larval infection system to study the effects of pesticide exposure on the development of European foulbrood disease. Pesticide doses tested were excessive (thiamethoxam and pyrimethanil) or maximal field-relevant (propiconazole and boscalid). We found that chronic exposure to the combination of thiamethoxam and propiconazole significantly decreased the survival of larvae infected with M. plutonius , while larvae chronically exposed to thiamethoxam and/or boscalid or pyrimethanil did not experience significant increases in mortality from M. plutonius infection in vitro . Based on these results, individual, calculated field-realistic residues of thiamethoxam and/or boscalid or pyrimethanil are unlikely to increase mortality from European foulbrood disease in honeybee worker brood, while the effects of field-relevant exposure to thiamethoxam and propiconazole on larval mortality from European foulbrood warrant further study.
    Keywords European foulbrood ; Melissococcus plutonius ; atypical ; honeybee ; neonicotinoid ; fungicide ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2020-04-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Chronic High-Dose Neonicotinoid Exposure Decreases Overwinter Survival of Apis mellifera L.

    Sarah C. Wood / Ivanna V. Kozii / Igor Medici de Mattos / Roney de Carvalho Macedo Silva / Colby D. Klein / Ihor Dvylyuk / Igor Moshynskyy / Tasha Epp / Elemir Simko

    Insects, Vol 11, Iss 1, p

    2019  Volume 30

    Abstract: Overwinter colony mortality is an ongoing challenge for North American beekeepers. During winter, honey bee colonies rely on stored honey and beebread, which is frequently contaminated with the neonicotinoid insecticides clothianidin and thiamethoxam. To ...

    Abstract Overwinter colony mortality is an ongoing challenge for North American beekeepers. During winter, honey bee colonies rely on stored honey and beebread, which is frequently contaminated with the neonicotinoid insecticides clothianidin and thiamethoxam. To determine whether neonicotinoid exposure affects overwinter survival of Apis mellifera L., we chronically exposed overwintering field colonies and winter workers in the laboratory to thiamethoxam or clothianidin at different concentrations and monitored survival and feed consumption. We also investigated the sublethal effects of chronic thiamethoxam exposure on colony pathogen load, queen quality, and colony temperature regulation. Under field conditions, high doses of thiamethoxam significantly increased overwinter mortality compared to controls, with field-realistic doses of thiamethoxam showing no significant effect on colony overwinter survival. Under laboratory conditions, chronic neonicotinoid exposure significantly decreased survival of winter workers relative to negative control at all doses tested. Chronic high-dose thiamethoxam exposure was not shown to impact pathogen load or queen quality, and field-realistic concentrations of thiamethoxam did not affect colony temperature homeostasis. Taken together, these results demonstrate that chronic environmental neonicotinoid exposure significantly decreases survival of winter workers in the laboratory, but only chronic high-dose thiamethoxam significantly decreases overwinter survival of colonies in the field.
    Keywords thiamethoxam ; clothianidin ; sublethal ; honey bee ; winter ; canada ; Science ; Q
    Language English
    Publishing date 2019-12-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top