LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Your last searches

  1. AU="Scott Nugent"
  2. AU="Sepideh MONSEF"
  3. AU="Wang, Zhaoqi"

Search results

Result 1 - 4 of total 4

Search options

  1. Article ; Online: Bias-adjustment in neuroimaging-based brain age frameworks

    Iman Beheshti / Scott Nugent / Olivier Potvin / Simon Duchesne

    NeuroImage: Clinical, Vol 24, Iss , Pp - (2019)

    A robust scheme

    2019  

    Abstract: The level of prediction error in the brain age estimation frameworks is associated with the authenticity of statistical inference on the basis of regression models. In this paper, we present an efficacious and plain bias-adjustment scheme using ... ...

    Abstract The level of prediction error in the brain age estimation frameworks is associated with the authenticity of statistical inference on the basis of regression models. In this paper, we present an efficacious and plain bias-adjustment scheme using chronological age as a covariate through the training set for downgrading the prediction bias in a Brain-age estimation framework. We applied proposed bias-adjustment scheme coupled by a machine learning-based brain age framework on a large set of metabolic brain features acquired from 675 cognitively unimpaired adults through fluorodeoxyglucose positron emission tomography data as the training set to build a robust Brain-age estimation framework. Then, we tested the reliability of proposed bias-adjustment scheme on 75 cognitively unimpaired adults, 561 mild cognitive impairment patients as well as 362 Alzheimer's disease patients as independent test sets. Using the proposed method, we gained a strong R2 of 0.81 between the chronological age and brain estimated age, as well as an excellent mean absolute error of 2.66 years on 75 cognitively unimpaired adults as an independent set; whereas an R2 of 0.24 and a mean absolute error of 4.71 years was achieved without bias-adjustment. The simulation results demonstrated that the proposed bias-adjustment scheme has a strong capability to diminish prediction error in brain age estimation frameworks for clinical settings. Keywords: Brain age, Estimation, Pet, Bias-adjustment, Brain metabolism
    Keywords Computer applications to medicine. Medical informatics ; R858-859.7 ; Neurology. Diseases of the nervous system ; RC346-429
    Subject code 616
    Language English
    Publishing date 2019-01-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Selection of the optimal intensity normalization region for FDG-PET studies of normal aging and Alzheimer’s disease

    Scott Nugent / Etienne Croteau / Olivier Potvin / Christian-Alexandre Castellano / Louis Dieumegarde / Stephen C. Cunnane / Simon Duchesne

    Scientific Reports, Vol 10, Iss 1, Pp 1-

    2020  Volume 8

    Abstract: Abstract The primary method for measuring brain metabolism in humans is positron emission tomography (PET) imaging using the tracer 18F-fluorodeoxyglucose (FDG). Standardized uptake value ratios (SUVR) are commonly calculated from FDG-PET images to ... ...

    Abstract Abstract The primary method for measuring brain metabolism in humans is positron emission tomography (PET) imaging using the tracer 18F-fluorodeoxyglucose (FDG). Standardized uptake value ratios (SUVR) are commonly calculated from FDG-PET images to examine intra- and inter-subject effects. Various reference regions are used in the literature of FDG-PET studies of normal aging, making comparison between studies difficult. Our primary objective was to determine the optimal SUVR reference region in the context of healthy aging, using partial volume effect (PVE) and non-PVE corrected data. We calculated quantitative cerebral metabolic rates of glucose (CMRg) from PVE-corrected and non-corrected images from young and older adults. We also investigated regional atrophy using magnetic resonance (MR) images. FreeSurfer 6.0 atlases were used to explore possible reference regions of interest (ROI). Multiple regression was used to predict CMRg data, in each FreeSurfer ROI, with age and sex as predictors. Age had the least effect in predicting CMRg for PVE corrected data in the pons (r 2 = 2.83 × 10−3, p = 0.67). For non-PVE corrected data age also had the least effect in predicting CMRg in the pons (r 2 = 3.12 × 10−3, p = 0.67). We compared the effects of using the whole brain or the pons as a reference region in PVE corrected data in two regions susceptible to hypometabolism in Alzheimer’s disease, the posterior cingulate and precuneus. Using the whole brain as a reference region resulted in non-significant group differences in the posterior cingulate while there were significant differences between all three groups in the precuneus (all p < 0.004). When using the pons as a reference region there was significant differences between all groups for both the posterior cingulate and the precuneus (all p < 0.001). Therefore, the use of the pons as a reference region is more sensitive to hypometabism changes associated with Alzheimer’s disease than the whole brain.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2020-06-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Regional Brain Glucose Hypometabolism in Young Women with Polycystic Ovary Syndrome

    Christian-Alexandre Castellano / Jean-Patrice Baillargeon / Scott Nugent / Sébastien Tremblay / Mélanie Fortier / Hélène Imbeault / Julie Duval / Stephen C Cunnane

    PLoS ONE, Vol 10, Iss 12, p e

    Possible Link to Mild Insulin Resistance.

    2015  Volume 0144116

    Abstract: Objective To investigate whether cerebral metabolic rate of glucose (CMRglu) is altered in normal weight young women with polycystic ovary syndrome (PCOS) who exhibit mild insulin resistance. Materials and methods Seven women with PCOS were compared to ... ...

    Abstract Objective To investigate whether cerebral metabolic rate of glucose (CMRglu) is altered in normal weight young women with polycystic ovary syndrome (PCOS) who exhibit mild insulin resistance. Materials and methods Seven women with PCOS were compared to eleven healthy female controls of similar age, education and body mass index. Regional brain glucose uptake was quantified using FDG with dynamic positron emission tomography and magnetic resonance imaging, and its potential relationship with insulin resistance assessed using the updated homeostasis model assessment (HOMA2-IR). A battery of cognitive tests was administered to evaluate working memory, attention and executive function. Results The PCOS group had 10% higher fasting glucose and 40% higher HOMA2-IR (p ≤ 0.035) compared to the Controls. The PCOS group had 9-14% lower CMRglu in specific regions of the frontal, parietal and temporal cortices (p ≤ 0.018). A significant negative relation was found between the CMRglu and HOMA2-IR mainly in the frontal, parietal and temporal cortices as well as in the hippocampus and the amygdala (p ≤ 0.05). Globally, cognitive performance was normal in both groups but scores on the PASAT test of working memory tended to be low in the PCOS group. Conclusions The PCOS group exhibited a pattern of low regional CMRglu that correlated inversely with HOMA2-IR in several brain regions and which resembled the pattern seen in aging and early Alzheimer's disease. These results suggest that a direct association between mild insulin resistance and brain glucose hypometabolism independent of overweight or obesity can exist in young adults in their 20s. Further investigation of the influence of insulin resistance on brain glucose metabolism and cognition in younger and middle-aged adults is warranted.
    Keywords Medicine ; R ; Science ; Q
    Subject code 616
    Language English
    Publishing date 2015-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Application of calibrated fMRI in Alzheimer's disease

    Isabelle Lajoie / Scott Nugent / Clément Debacker / Kenneth Dyson / Felipe B. Tancredi / AmanPreet Badhwar / Sylvie Belleville / Yan Deschaintre / Pierre Bellec / Julien Doyon / Christian Bocti / Serge Gauthier / Douglas Arnold / Marie-Jeanne Kergoat / Howard Chertkow / Oury Monchi / Richard D. Hoge

    NeuroImage: Clinical, Vol 15, Iss , Pp 348-

    2017  Volume 358

    Abstract: Calibrated fMRI based on arterial spin-labeling (ASL) and blood oxygen-dependent contrast (BOLD), combined with periods of hypercapnia and hyperoxia, can provide information on cerebrovascular reactivity (CVR), resting blood flow (CBF), oxygen extraction ...

    Abstract Calibrated fMRI based on arterial spin-labeling (ASL) and blood oxygen-dependent contrast (BOLD), combined with periods of hypercapnia and hyperoxia, can provide information on cerebrovascular reactivity (CVR), resting blood flow (CBF), oxygen extraction fraction (OEF), and resting oxidative metabolism (CMRO2). Vascular and metabolic integrity are believed to be affected in Alzheimer's disease (AD), thus, the use of calibrated fMRI in AD may help understand the disease and monitor therapeutic responses in future clinical trials. In the present work, we applied a calibrated fMRI approach referred to as Quantitative O2 (QUO2) in a cohort of probable AD dementia and age-matched control participants. The resulting CBF, OEF and CMRO2 values fell within the range from previous studies using positron emission tomography (PET) with 15O labeling. Moreover, the typical parietotemporal pattern of hypoperfusion and hypometabolism in AD was observed, especially in the precuneus, a particularly vulnerable region. We detected no deficit in frontal CBF, nor in whole grey matter CVR, which supports the hypothesis that the effects observed were associated specifically with AD rather than generalized vascular disease. Some key pitfalls affecting both ASL and BOLD methods were encountered, such as prolonged arterial transit times (particularly in the occipital lobe), the presence of susceptibility artifacts obscuring medial temporal regions, and the challenges associated with the hypercapnic manipulation in AD patients and elderly participants. The present results are encouraging and demonstrate the promise of calibrated fMRI measurements as potential biomarkers in AD. Although CMRO2 can be imaged with 15O PET, the QUO2 method uses more widely available imaging infrastructure, avoids exposure to ionizing radiation, and integrates with other MRI-based measures of brain structure and function. Keywords: Calibrated fMRI, Alzheimer's disease, Cerebral blood flow, Oxidative metabolism, Oxygen extraction fraction, BOLD calibration ...
    Keywords Computer applications to medicine. Medical informatics ; R858-859.7 ; Neurology. Diseases of the nervous system ; RC346-429
    Subject code 610
    Language English
    Publishing date 2017-01-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top