LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 12

Search options

  1. Article ; Online: Three-Dimensional-QSAR and Relative Binding Affinity Estimation of Focal Adhesion Kinase Inhibitors

    Suparna Ghosh / Seung Joo Cho

    Molecules, Vol 28, Iss 1464, p

    2023  Volume 1464

    Abstract: Precise binding affinity predictions are essential for structure-based drug discovery (SBDD). Focal adhesion kinase (FAK) is a member of the tyrosine kinase protein family and is overexpressed in a variety of human malignancies. Inhibition of FAK using ... ...

    Abstract Precise binding affinity predictions are essential for structure-based drug discovery (SBDD). Focal adhesion kinase (FAK) is a member of the tyrosine kinase protein family and is overexpressed in a variety of human malignancies. Inhibition of FAK using small molecules is a promising therapeutic option for several types of cancer. Here, we conducted computational modeling of FAK-targeting inhibitors using three-dimensional structure–activity relationship (3D-QSAR), molecular dynamics (MD), and hybrid topology-based free energy perturbation (FEP) methods. The structure–activity relationship (SAR) studies between the physicochemical descriptors and inhibitory activities of the chemical compounds were performed with reasonable statistical accuracy using CoMFA and CoMSIA. These are two well-known 3D-QSAR methods based on the principle of supervised machine learning (ML). Essential information regarding residue-specific binding interactions was determined using MD and MM-PB/GBSA methods. Finally, physics-based relative binding free energy ( <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><mo>Δ</mo><msubsup><mi mathvariant="normal">G</mi><mrow><mi>RBFE</mi></mrow><mrow><mi mathvariant="normal">A</mi><mo>→</mo><mi mathvariant="normal">B</mi></mrow></msubsup></mrow></semantics></math> ) terms of analogous ligands were estimated using alchemical FEP simulation. An acceptable agreement was observed between the experimental and computed relative binding free energies. Overall, the results suggested that using ML and physics-based hybrid approaches could be useful in synergy for the rational optimization of accessible lead compounds with similar scaffolds targeting the FAK receptor.
    Keywords focal adhesion kinase ; 3D-QSAR ; molecular dynamics ; MM-PB/GBSA ; free energy perturbation ; Organic chemistry ; QD241-441
    Subject code 540
    Language English
    Publishing date 2023-02-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Binding Studies and Lead Generation of Pteridin-7(8 H )-one Derivatives Targeting FLT3

    Suparna Ghosh / Seung Joo Cho

    International Journal of Molecular Sciences, Vol 23, Iss 14, p

    2022  Volume 7696

    Abstract: Ligand modification by substituting chemical groups within the binding pocket is a popular strategy for kinase drug development. In this study, a series of pteridin-7(8 H )-one derivatives targeting wild-type FMS-like tyrosine kinase-3 (FLT3) and its ... ...

    Abstract Ligand modification by substituting chemical groups within the binding pocket is a popular strategy for kinase drug development. In this study, a series of pteridin-7(8 H )-one derivatives targeting wild-type FMS-like tyrosine kinase-3 (FLT3) and its D835Y mutant (FL3 D835Y ) were studied using a combination of molecular modeling techniques, such as docking, molecular dynamics (MD), binding energy calculation, and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies. We determined the protein–ligand binding affinity by employing molecular mechanics Poisson–Boltzmann/generalized Born surface area (MM-PB/GBSA), fast pulling ligand (FPL) simulation, linear interaction energy (LIE), umbrella sampling (US), and free energy perturbation (FEP) scoring functions. The structure–activity relationship (SAR) study was conducted using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), and the results were emphasized as a SAR scheme. In both the CoMFA and CoMSIA models, satisfactory correlation statistics were obtained between the observed and predicted inhibitory activity. The MD and SAR models were co-utilized to design several new compounds, and their inhibitory activities were anticipated using the CoMSIA model. The designed compounds with higher predicted pIC 50 values than the most active compound were carried out for binding free energy evaluation to wild-type and mutant receptors using MM-PB/GBSA, LIE, and FEP methods.
    Keywords FMS-like tyrosine kinase-3 ; MM-PB/GBSA ; structure–activity relationship ; linear interaction energy ; umbrella sampling ; free energy perturbation ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 540
    Language English
    Publishing date 2022-07-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Computer aided designing of novel pyrrolopyridine derivatives as JAK1 inhibitors

    Seketoulie Keretsu / Suparna Ghosh / Seung Joo Cho

    Scientific Reports, Vol 11, Iss 1, Pp 1-

    2021  Volume 12

    Abstract: Abstract Janus kinases (JAKs) are a family of non-receptor kinases that play a key role in cytokine signaling and their aberrant activities are associated with the pathogenesis of various immune diseases. The JAK1 isoform plays an essential role in the ... ...

    Abstract Abstract Janus kinases (JAKs) are a family of non-receptor kinases that play a key role in cytokine signaling and their aberrant activities are associated with the pathogenesis of various immune diseases. The JAK1 isoform plays an essential role in the types 1 and II interferon signaling and elicits signals from the interleukin-2, interleukin-4, gp130, and class 2 receptor families. It is ubiquitously expressed in humans and its overexpression has been linked with autoimmune diseases such as myeloproliferative neoplasm. Although JAK1 inhibitors such as Tofacitinib have been approved for medical use, the low potency and off-target effects of these inhibitors have limited their use and calls for the development of novel JAK1 inhibitors. In this study, we used computational methods on a series of pyrrolopyridine derivatives to design new JAK1 inhibitors. Molecular docking and molecular dynamics simulation methods were used to study the protein-inhibitor interactions. 3D-quantitative structure–activity relationship models were developed and were used to predict the activity of newly designed compounds. Free energy calculation methods were used to study the binding affinity of the inhibitors with JAK1. Of the designed compounds, seventeen of the compounds showed a higher binding energy value than the most active compound in the dataset and at least six of the compounds showed higher binding energy value than the pan JAK inhibitor Tofacitinib. The findings made in this study could be utilized for the further development of JAK1 inhibitors.
    Keywords Medicine ; R ; Science ; Q
    Subject code 540
    Language English
    Publishing date 2021-11-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Molecular Modelling Studies on Pyrazole Derivatives for the Design of Potent Rearranged during Transfection Kinase Inhibitors

    Swapnil P. Bhujbal / Seketoulie Keretsu / Seung Joo Cho

    Molecules, Vol 26, Iss 3, p

    2021  Volume 691

    Abstract: RET (rearranged during transfection) kinase, one of the receptor tyrosine kinases, plays a crucial role in the development of the human nervous system. It is also involved in various cell signaling networks responsible for the normal cell division, ... ...

    Abstract RET (rearranged during transfection) kinase, one of the receptor tyrosine kinases, plays a crucial role in the development of the human nervous system. It is also involved in various cell signaling networks responsible for the normal cell division, growth, migration, and survival. Previously reported clinical studies revealed that deregulation or aberrant activation of RET signaling can cause several types of human cancer. For example, medullary thyroid carcinoma (MTC) and multiple endocrine neoplasia (MEN2A, MEN2B) occur due to sporadic mutation or germline RET mutation. A number of RET kinase inhibitors have been approved by the FDA for the treatment of cancer, such as cabozantinib, vandetanib, lenvatinib, and sorafenib. However, each of these drugs is a multikinase inhibitor. Hence, RET is an important therapeutic target for cancer drug design. In this work, we have performed various molecular modelling studies, such as molecular docking and dynamics simulation for the most active compound of the pyrazole series as RET kinase inhibitors. Furthermore, molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) free energy calculation and 3-dimensional quantitative structure–activity relationship (3D-QSAR) were performed using g_mmpbsa and SYBYL-X 2.1 package. The results of this study revealed the crucial binding site residues at the active site of RET kinase and contour map analysis showed important structural characteristics for the design of new highly active inhibitors. Therefore, we have designed ten RET kinase inhibitors, which showed higher inhibitory activity than the most active compound of the series. The results of our study provide insights to design more potent and selective RET kinase inhibitors.
    Keywords RET ; receptor tyrosine kinases ; inhibitors ; pyrazole ; 3D-QSAR ; MM/PBSA ; Organic chemistry ; QD241-441
    Subject code 500 ; 540
    Language English
    Publishing date 2021-01-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Designing of the N-ethyl-4-(pyridin-4-yl)benzamide based potent ROCK1 inhibitors using docking, molecular dynamics, and 3D-QSAR

    Suparna Ghosh / Seketoulie Keretsu / Seung Joo Cho

    PeerJ, Vol 9, p e

    2021  Volume 11951

    Abstract: Rho-associated kinase-1 (ROCK1) has been recognized for its pivotal role in heart diseases, different types of malignancy, and many neurological disorders. Hyperactivity of ROCK phosphorylates the protein kinase-C (PKC), which ultimately induces smooth ... ...

    Abstract Rho-associated kinase-1 (ROCK1) has been recognized for its pivotal role in heart diseases, different types of malignancy, and many neurological disorders. Hyperactivity of ROCK phosphorylates the protein kinase-C (PKC), which ultimately induces smooth muscle cell contraction in the vascular system. Inhibition of ROCK1 has been shown to be a promising therapy for patients with cardiovascular disease. In this study, we have conducted molecular modeling techniques such as docking, molecular dynamics (MD), and 3-Dimensional structure-activity relationship (3D-QSAR) on a series of N-ethyl-4-(pyridin-4-yl)benzamide-based compounds. Docking and MD showed critical interactions and binding affinities between ROCK1 and its inhibitors. To establish the structure-activity relationship (SAR) of the compounds, 3D-QSAR techniques such as Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) were used. The CoMFA (q2 = 0.774, r2 = 0.965, ONC = 6, and ${r}_{pred}^{2}$ r p r e d 2 = 0.703) and CoMSIA (q2 = 0.676, r2 = 0.949, ONC = 6, and ${r}_{pred}^{2}$ r p r e d 2 = 0.548) both models have shown reasonable external predictive activity, and contour maps revealed favorable and unfavorable substitutions for chemical group modifications. Based on the contour maps, we have designed forty new compounds, among which, seven compounds exhibited higher predictive activity (pIC50). Further, we conducted the MD study, ADME/Tox, and SA score prediction using the seven newly designed compounds. The combination of docking, MD, and 3D-QSAR studies helps to understand the coherence modification of existing molecules. Our study may provide valuable insight into the development of more potent ROCK1 inhibitors.
    Keywords Rho-associated kinase-1 (ROCK1) ; Cardio-vascular disease ; Molecular docking ; Molecular dynamics ; MMPBSA ; 3D-QSAR ; Medicine ; R ; Biology (General) ; QH301-705.5
    Subject code 540
    Language English
    Publishing date 2021-08-01T00:00:00Z
    Publisher PeerJ Inc.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation

    Seketoulie Keretsu / Swapnil P. Bhujbal / Seung Joo Cho

    Scientific Reports, Vol 10, Iss 1, Pp 1-

    2020  Volume 14

    Abstract: Abstract In the rapidly evolving coronavirus disease (COVID-19) pandemic, repurposing existing drugs and evaluating commercially available inhibitors against druggable targets of the virus could be an effective strategy to accelerate the drug discovery ... ...

    Abstract Abstract In the rapidly evolving coronavirus disease (COVID-19) pandemic, repurposing existing drugs and evaluating commercially available inhibitors against druggable targets of the virus could be an effective strategy to accelerate the drug discovery process. The 3C-Like proteinase (3CLpro) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as an important drug target due to its role in viral replication. The lack of a potent 3CLpro inhibitor and the availability of the X-ray crystal structure of 3CLpro (PDB-ID 6LU7) motivated us to perform computational studies to identify commercially available potential inhibitors. A combination of modeling studies was performed to identify potential 3CLpro inhibitors from the protease inhibitor database MEROPS ( https://www.ebi.ac.uk/merops/index.shtml ). Binding energy evaluation identified key residues for inhibitor design. We found 15 potential 3CLpro inhibitors with higher binding affinity than that of an α-ketoamide inhibitor determined via X-ray structure. Among them, saquinavir and three other investigational drugs aclarubicin, TMC-310911, and faldaprevir could be suggested as potential 3CLpro inhibitors. We recommend further experimental investigation of these compounds.
    Keywords Medicine ; R ; Science ; Q
    Subject code 540
    Language English
    Publishing date 2020-10-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Molecular Modeling Study of c-KIT/PDGFRα Dual Inhibitors for the Treatment of Gastrointestinal Stromal Tumors

    Seketoulie Keretsu / Suparna Ghosh / Seung Joo Cho

    International Journal of Molecular Sciences, Vol 21, Iss 8232, p

    2020  Volume 8232

    Abstract: Gastrointestinal stromal tumors (GISTs) are the most common Mesenchymal Neoplasm of the gastrointestinal tract. The tumorigenesis of GISTs has been associated with the gain-of-function mutation and abnormal activation of the stem cell factor receptor (c- ... ...

    Abstract Gastrointestinal stromal tumors (GISTs) are the most common Mesenchymal Neoplasm of the gastrointestinal tract. The tumorigenesis of GISTs has been associated with the gain-of-function mutation and abnormal activation of the stem cell factor receptor (c-KIT) and platelet-derived growth factor receptor alpha (PDGFRα) kinases. Hence, inhibitors that target c-KIT and PDGFRα could be a therapeutic option for the treatment of GISTs. The available approved c-KIT/PDGFRα inhibitors possessed low efficacy with off-target effects, which necessitated the development of potent inhibitors. We performed computational studies of 48 pyrazolopyridine derivatives that showed inhibitory activity against c-KIT and PDGFRα to study the structural properties important for inhibition of both the kinases. The derivative of phenylurea, which has high activities for both c-KIT (pIC 50 = 8.6) and PDGFRα (pIC 50 = 8.1), was used as the representative compound for the dataset. Molecular docking and molecular dynamics simulation (100 ns) of compound 14 was performed. Compound 14 showed the formation of hydrogen bonding with Cys673, Glu640, and Asp810 in c-KIT, and Cys677, Glu644, and Asp836 in PDGFRα. The results also suggested that Thr670/T674 substitution in c-KIT/PDGFRα induced conformational changes at the binding site of the receptors. Three-dimensional quantitative structure–activity relationship (3D-QSAR) models were developed based on the inhibitors. Contour map analysis showed that electropositive and bulky substituents at the para-position and the meta-position of the benzyl ring of compound 14 was favorable and may increase the inhibitory activity against both c-KIT and PDGFRα. Analysis of the results suggested that having bulky and hydrophobic substituents that extend into the hydrophobic pocket of the binding site increases the activity for both c-KIT and PDGFRα. Based on the contour map analysis, 50 compounds were designed, and the activities were predicted. An evaluation of binding free energy showed that eight of the designed ...
    Keywords c-KIT ; PDGFRα ; molecular dynamics simulation ; free energy calculation ; CoMFA ; CoMSIA ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 540
    Language English
    Publishing date 2020-11-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: 3D-QSAR, docking, molecular dynamics simulation and free energy calculation studies of some pyrimidine derivatives as novel JAK3 inhibitors

    Anand Balupuri / Pavithra K. Balasubramanian / Seung Joo Cho

    Arabian Journal of Chemistry, Vol 13, Iss 1, Pp 1052-

    2020  Volume 1078

    Abstract: Janus kinase 3 (JAK3) is a promising drug target for the treatment of inflammatory diseases, autoimmune disorders, organ transplant rejection and various cancers. In the present study, 3D-QSAR, docking, MD simulation and MM/PBSA studies were performed on ...

    Abstract Janus kinase 3 (JAK3) is a promising drug target for the treatment of inflammatory diseases, autoimmune disorders, organ transplant rejection and various cancers. In the present study, 3D-QSAR, docking, MD simulation and MM/PBSA studies were performed on a series of pyrimidine-based JAK3 inhibitors. A reliable COMSIA (q2 = 0.717 and r2 = 0.986) model was developed and validated using external validation test set, bootstrapping, progressive scrambling and rm2 metrics analyses. Structural requirements identified through contour maps of the model were strategically utilized to computationally design 170 novel JAK3 inhibitors with improved potency. Docking studies were performed on the selected data set and newly designed compounds to show their binding mode and to identify important interacting residues inside the active site of JAK3. In addition, docking results of the selected designed compounds inside the active sites of JAK1, JAK2 and TYK2 indicated their JAK3 selectivity. MD simulation (100 ns) on the docked complex of compound 28 (one of highly active compounds of the data set) assisted in the further exploration of the binding interactions. Some crucial residues like Lys830 (glycine-rich loop), Val836, Ala853, Leu905 (hinge region), Cys909, Asn954, Leu956 and Ala966 were identified. Hydrogen bond interactions with hinge residue Leu905 were critical for the binding of JAK3 inhibitors. Additionally, MM/PBSA calculation provided the binding free energy of the compound 28. Newly designed molecules showed promising results in the preliminary in silico ADMET evaluations. Outcomes of the study can further be exploited to develop potent JAK3 inhibitors. Keywords: 3D-QSAR, ADMET, Docking, MD simulation, MM/PBSA
    Keywords Chemistry ; QD1-999
    Subject code 540
    Language English
    Publishing date 2020-01-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Computational study of paroxetine-like inhibitors reveals new molecular insight to inhibit GRK2 with selectivity over ROCK1

    Seketoulie Keretsu / Swapnil P. Bhujbal / Seung Joo Cho

    Scientific Reports, Vol 9, Iss 1, Pp 1-

    2019  Volume 14

    Abstract: Abstract The G-protein coupled receptor kinase 2 (GRK2) regulates the desensitization of beta-adrenergic receptors (β-AR), and its overexpression has been implicated in heart failure. Hence, the inhibition of GRK2 is considered to be an important drug ... ...

    Abstract Abstract The G-protein coupled receptor kinase 2 (GRK2) regulates the desensitization of beta-adrenergic receptors (β-AR), and its overexpression has been implicated in heart failure. Hence, the inhibition of GRK2 is considered to be an important drug target for the treatment of heart failure. Due to the high sequence similarity of GRK2 with the A, G, and C family (AGC family) of kinases, the inhibition of GRK2 also leads to the inhibition of AGC kinases such as Rho-associated coiled-coil kinase 1 (ROCK1). Therefore, unraveling the mechanisms to selectively inhibit GRK2 poses an important challenge. We have performed molecular docking, three dimensional quantitative structure activity relationship (3D-QSAR), molecular dynamics (MD) simulation, and free energy calculations techniques on a series of 53 paroxetine-like compounds to understand the structural properties desirable for enhancing the inhibitory activity for GRK2 with selectivity over ROCK1. The formation of stable hydrogen bond interactions with the residues Phe202 and Lys220 of GRK2 seems to be important for selective inhibition of GRK2. Electropositive substituents at the piperidine ring and electronegative substituents near the amide linker between the benzene ring and pyrazole ring showed a higher inhibitory preference for GRK2 over ROCK1. This study may be used in designing more potent and selective GRK2 inhibitors for therapeutic intervention of heart failure.
    Keywords Medicine ; R ; Science ; Q
    Subject code 540
    Language English
    Publishing date 2019-09-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: Structural insights from binding poses of CCR2 and CCR5 with clinically important antagonists

    Gugan Kothandan / Changdev G Gadhe / Seung Joo Cho

    PLoS ONE, Vol 7, Iss 3, p e

    a combined in silico study.

    2012  Volume 32864

    Abstract: Chemokine receptors are G protein-coupled receptors that contain seven transmembrane domains. In particular, CCR2 and CCR5 and their ligands have been implicated in the pathophysiology of a number of diseases, including rheumatoid arthritis and multiple ... ...

    Abstract Chemokine receptors are G protein-coupled receptors that contain seven transmembrane domains. In particular, CCR2 and CCR5 and their ligands have been implicated in the pathophysiology of a number of diseases, including rheumatoid arthritis and multiple sclerosis. Based on their roles in disease, they have been attractive targets for the pharmaceutical industry, and furthermore, targeting both CCR2 and CCR5 can be a useful strategy. Owing to the importance of these receptors, information regarding the binding site is of prime importance. Structural studies have been hampered due to the lack of X-ray crystal structures, and templates with close homologs for comparative modeling. Most of the previous models were based on the bovine rhodopsin and β2-adrenergic receptor. In this study, based on a closer homolog with higher resolution (CXCR4, PDB code: 3ODU 2.5 Å), we constructed three-dimensional models. The main aim of this study was to provide relevant information on binding sites of these receptors. Molecular dynamics simulation was done to refine the homology models and PROCHECK results indicated that the models were reasonable. Here, binding poses were checked with some established inhibitors of high pharmaceutical importance against the modeled receptors. Analysis of interaction modes gave an integrated interpretation with detailed structural information. The binding poses confirmed that the acidic residues Glu291 (CCR2) and Glu283 (CCR5) are important, and we also found some additional residues. Comparisons of binding sites of CCR2/CCR5 were done sequentially and also by docking a potent dual antagonist. Our results can be a starting point for further structure-based drug design.
    Keywords Medicine ; R ; Science ; Q
    Subject code 540
    Language English
    Publishing date 2012-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top