LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article: Investigation on Microstructure and Properties of Duplex Stainless Steel Welds by Underwater Laser Welding with Different Shielding Gas.

    Wang, Kai / Shao, Changlei / Jiao, Xiangdong / Zhu, Jialei / Cai, Zhihai / Li, Congwei

    Materials (Basel, Switzerland)

    2021  Volume 14, Issue 17

    Abstract: Taking S32101 duplex stainless steel as the research object, underwater laser wire filling welding technology was used for U-groove filling welding. The influence of different shielding gas compositions on the ferrite content, microstructure, mechanical ... ...

    Abstract Taking S32101 duplex stainless steel as the research object, underwater laser wire filling welding technology was used for U-groove filling welding. The influence of different shielding gas compositions on the ferrite content, microstructure, mechanical properties and pitting corrosion resistance was studied by simulating a water depth of 15 m in the hyperbaric chamber. The results show that, under the same process parameters, the size and proportion of austenite in the weld when using pure nitrogen as the shielding gas are larger than those protected by other shielding gases. In a mixed shielding gas, the increase in nitrogen content has little effect on the strength and toughness of the weld. Regardless of the shielding gas used, the base metal was the weakest part of the weld. At the same time, intermetallic inclusions have an adverse effect on the impact toughness of the weld. The pitting corrosion resistance of the welds depends on the Cr
    Language English
    Publishing date 2021-08-24
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2487261-1
    ISSN 1996-1944
    ISSN 1996-1944
    DOI 10.3390/ma14174774
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article: The Cao-Xiang-Wei-Kang formula attenuates the progression of experimental colitis by restoring the homeostasis of the microbiome and suppressing inflammation.

    Yu, Wei / Li, Qi / Shao, Changlei / Zhang, Yijia / Kang, Cai / Zheng, Yang / Liu, Xihao / Liu, Xincheng / Yan, Jing

    Frontiers in pharmacology

    2022  Volume 13, Page(s) 946065

    Abstract: Inflammatory bowel disease (IBD) is pathologically characterized by an immune response accommodative insufficiency and dysbiosis accompanied by persistent epithelial barrier dysfunction. The Cao-Xiang-Wei-Kang (CW) formula has been utilized to treat ... ...

    Abstract Inflammatory bowel disease (IBD) is pathologically characterized by an immune response accommodative insufficiency and dysbiosis accompanied by persistent epithelial barrier dysfunction. The Cao-Xiang-Wei-Kang (CW) formula has been utilized to treat gastrointestinal disorders in the clinic. The present study was designed to delineate the pharmacological mechanisms of this formula from different aspects of the etiology of ulcerative colitis (UC), a major subtype of IBD. Dextran sodium sulfate (DSS) was given to mice for a week at a concentration of 2%, and the CW solution was administered for 3 weeks. 16S rRNA gene sequencing and untargeted metabolomics were conducted to examine the changes in the microbiome profile, and biochemical experiments were performed to confirm the therapeutic functions predicted by system pharmacology analysis. The CW treatment hampered DSS-induced experimental colitis progression, and the targets were enriched in inflammation, infection, and tumorigenesis, which was corroborated by suppressed caspase 3 (Casp3) and interleukin-1b (IL-1b) and increased cleaved caspase 3 expression and casp-3 activity in the colon samples from colitis mice subjected to the CW therapy. Moreover, the CW therapy rescued the decreased richness and diversity, suppressed the potentially pathogenic phenotype of the gut microorganisms, and reversed the altered linoleic acid metabolism and cytochrome P450 activity in murine colitis models. In our
    Language English
    Publishing date 2022-09-20
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2587355-6
    ISSN 1663-9812
    ISSN 1663-9812
    DOI 10.3389/fphar.2022.946065
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  3. Article: Validation of the Anticolitis Efficacy of the Jian-Wei-Yu-Yang Formula.

    Yan, Jing / Tang, Yan / Yu, Wei / Jiang, Lu / Liu, Chen / Li, Qi / Zhang, Zhiqiang / Shao, Changlei / Zheng, Yang / Liu, Xihao / Liu, Xincheng

    Evidence-based complementary and alternative medicine : eCAM

    2022  Volume 2022, Page(s) 9110704

    Abstract: Background: Inflammatory bowel disease (IBD) is a major cause of morbidity and mortality due to its repetitive remission and relapse. The Jian-Wei-Yu-Yang (JW) formula has a historical application in the clinic to combat gastrointestinal disorders. The ... ...

    Abstract Background: Inflammatory bowel disease (IBD) is a major cause of morbidity and mortality due to its repetitive remission and relapse. The Jian-Wei-Yu-Yang (JW) formula has a historical application in the clinic to combat gastrointestinal disorders. The investigation aimed to explore the molecular and cellular mechanisms of JW.
    Methods: 2% dextran sodium sulfate (DSS) was diluted in drinking water and given to mice for 5 days to establish murine models of experimental colitis, and different doses of JW solution were administered for 14 days. Network pharmacology analysis and weighted gene co-expression network analysis (WGCNA) were utilized to predict the therapeutic role of JW against experimental colitis and colitis-associated colorectal cancer (CAC). 16S rRNA sequencing and untargeted metabolomics were conducted using murine feces. Western blotting, immunocytochemistry, and wound healing experiments were performed to confirm the molecular mechanisms.
    Results: (1) Liquid chromatography with mass spectrometry was utilized to confirm the validity of the JW formula. The high dose of JW treatment markedly attenuated DSS-induced experimental colitis progression, and the targets were enriched in inflammation, infection, and tumorigenesis. (2) The JW targets were related to the survival probability in patients with colorectal cancer, underlying a potential therapeutic value in CRC intervention. (3) Moreover, the JW therapy successfully rescued the decreased richness and diversity of microbiota, suppressed the potentially pathogenic phenotype of the gut microorganisms, and increased cytochrome P450 activity in murine colitis models. (4) Our
    Conclusion: The JW capsule attenuated the progression of murine colitis by a prompt resolution of inflammation and bloody stool and by re-establishing a microbiome profile that favors re-epithelization and prevents carcinogenesis.
    Language English
    Publishing date 2022-08-31
    Publishing country United States
    Document type Journal Article
    ZDB-ID 2171158-6
    ISSN 1741-4288 ; 1741-427X
    ISSN (online) 1741-4288
    ISSN 1741-427X
    DOI 10.1155/2022/9110704
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top