LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: Automated diagnosis of plus disease in retinopathy of prematurity using quantification of vessels characteristics.

    Sharafi, Sayed Mehran / Ebrahimiadib, Nazanin / Roohipourmoallai, Ramak / Farahani, Afsar Dastjani / Fooladi, Marjan Imani / Khalili Pour, Elias

    Scientific reports

    2024  Volume 14, Issue 1, Page(s) 6375

    Abstract: The condition known as Plus disease is distinguished by atypical alterations in the retinal vasculature of neonates born prematurely. It has been demonstrated that the diagnosis of Plus disease is subjective and qualitative in nature. The utilization of ... ...

    Abstract The condition known as Plus disease is distinguished by atypical alterations in the retinal vasculature of neonates born prematurely. It has been demonstrated that the diagnosis of Plus disease is subjective and qualitative in nature. The utilization of quantitative methods and computer-based image analysis to enhance the objectivity of Plus disease diagnosis has been extensively established in the literature. This study presents the development of a computer-based image analysis method aimed at automatically distinguishing Plus images from non-Plus images. The proposed methodology conducts a quantitative analysis of the vascular characteristics linked to Plus disease, thereby aiding physicians in making informed judgments. A collection of 76 posterior retinal images from a diverse group of infants who underwent screening for Retinopathy of Prematurity (ROP) was obtained. A reference standard diagnosis was established as the majority of the labeling performed by three experts in ROP during two separate sessions. The process of segmenting retinal vessels was carried out using a semi-automatic methodology. Computer algorithms were developed to compute the tortuosity, dilation, and density of vessels in various retinal regions as potential discriminative characteristics. A classifier was provided with a set of selected features in order to distinguish between Plus images and non-Plus images. This study included 76 infants (49 [64.5%] boys) with mean birth weight of 1305 ± 427 g and mean gestational age of 29.3 ± 3 weeks. The average level of agreement among experts for the diagnosis of plus disease was found to be 79% with a standard deviation of 5.3%. In terms of intra-expert agreement, the average was 85% with a standard deviation of 3%. Furthermore, the average tortuosity of the five most tortuous vessels was significantly higher in Plus images compared to non-Plus images (p ≤ 0.0001). The curvature values based on points were found to be significantly higher in Plus images compared to non-Plus images (p ≤ 0.0001). The maximum diameter of vessels within a region extending 5-disc diameters away from the border of the optic disc (referred to as 5DD) exhibited a statistically significant increase in Plus images compared to non-Plus images (p ≤ 0.0001). The density of vessels in Plus images was found to be significantly higher compared to non-Plus images (p ≤ 0.0001). The classifier's accuracy in distinguishing between Plus and non-Plus images, as determined through tenfold cross-validation, was found to be 0.86 ± 0.01. This accuracy was observed to be higher than the diagnostic accuracy of one out of three experts when compared to the reference standard. The implemented algorithm in the current study demonstrated a commendable level of accuracy in detecting Plus disease in cases of retinopathy of prematurity, exhibiting comparable performance to that of expert diagnoses. By engaging in an objective analysis of the characteristics of vessels, there exists the possibility of conducting a quantitative assessment of the disease progression's features. The utilization of this automated system has the potential to enhance physicians' ability to diagnose Plus disease, thereby offering valuable contributions to the management of ROP through the integration of traditional ophthalmoscopy and image-based telemedicine methodologies.
    MeSH term(s) Infant, Newborn ; Infant ; Male ; Humans ; Female ; Retinopathy of Prematurity/diagnosis ; Infant, Premature ; Retinal Vessels/diagnostic imaging ; Retina ; Gestational Age ; Reproducibility of Results
    Language English
    Publishing date 2024-03-16
    Publishing country England
    Document type Journal Article
    ZDB-ID 2615211-3
    ISSN 2045-2322 ; 2045-2322
    ISSN (online) 2045-2322
    ISSN 2045-2322
    DOI 10.1038/s41598-024-57072-4
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: Vascular retinal biomarkers improves the detection of the likely cerebral amyloid status from hyperspectral retinal images.

    Sharafi, Sayed Mehran / Sylvestre, Jean-Philippe / Chevrefils, Claudia / Soucy, Jean-Paul / Beaulieu, Sylvain / Pascoal, Tharick A / Arbour, Jean Daniel / Rhéaume, Marc-André / Robillard, Alain / Chayer, Céline / Rosa-Neto, Pedro / Mathotaarachchi, Sulantha S / Nasreddine, Ziad S / Gauthier, Serge / Lesage, Frédéric

    Alzheimer's & dementia (New York, N. Y.)

    2019  Volume 5, Page(s) 610–617

    Abstract: Introduction: This study investigates the relationship between retinal image features and β-amyloid (Aβ) burden in the brain with the aim of developing a noninvasive method to predict the deposition of Aβ in the brain of patients with Alzheimer's ... ...

    Abstract Introduction: This study investigates the relationship between retinal image features and β-amyloid (Aβ) burden in the brain with the aim of developing a noninvasive method to predict the deposition of Aβ in the brain of patients with Alzheimer's disease.
    Methods: Retinal images from 20 cognitively impaired and 26 cognitively unimpaired cases were acquired (3 images per subject) using a hyperspectral retinal camera. The cerebral amyloid status was determined from binary reads by a panel of 3 expert raters on
    Results: Retinal venules of amyloid-positive subjects (Aβ+) showed a higher mean tortuosity compared with the amyloid-negative (Aβ-) subjects. Arteriolar diameter of Aβ+ subjects was found to be higher than the Aβ- subjects in a zone adjacent to the optical nerve head. Furthermore, a significant difference between texture measures built over retinal arterioles and their adjacent regions were observed in Aβ+ subjects when compared with the Aβ-. A classifier was trained to automatically discriminate subjects combining the extracted features. The classifier could discern Aβ+ subjects from Aβ- subjects with an accuracy of 85%.
    Discussion: Significant differences in texture measures were observed in the spectral range 450 to 550 nm which is known as the spectral region known to be affected by scattering from amyloid aggregates in the retina. This study suggests that the inclusion of metrics related to the retinal vasculature and tissue-related textures extracted from vessels and surrounding regions could improve the discrimination performance of the cerebral amyloid status.
    Language English
    Publishing date 2019-10-14
    Publishing country United States
    Document type Journal Article
    ZDB-ID 2832891-7
    ISSN 2352-8737 ; 2352-8737
    ISSN (online) 2352-8737
    ISSN 2352-8737
    DOI 10.1016/j.trci.2019.09.006
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top