LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 14

Search options

  1. Article ; Online: Single-Cell RNA Sequencing Analysis for Oncogenic Mechanisms Underlying Oral Squamous Cell Carcinoma Carcinogenesis with Candida albicans Infection

    Yi-Ping Hsieh / Yu-Hsueh Wu / Siao-Muk Cheng / Fang-Kuei Lin / Daw-Yang Hwang / Shih-Sheng Jiang / Ken-Chung Chen / Meng-Yen Chen / Wei-Fan Chiang / Ko-Jiunn Liu / Nam Cong-Nhat Huynh / Wen-Tsung Huang / Tze-Ta Huang

    International Journal of Molecular Sciences, Vol 23, Iss 4833, p

    2022  Volume 4833

    Abstract: Oral squamous cell carcinoma (OSCC) carcinogenesis involves heterogeneous tumor cells, and the tumor microenvironment (TME) is highly complex with many different cell types. Cancer cell–TME interactions are crucial in OSCC progression. Candida albicans ( ...

    Abstract Oral squamous cell carcinoma (OSCC) carcinogenesis involves heterogeneous tumor cells, and the tumor microenvironment (TME) is highly complex with many different cell types. Cancer cell–TME interactions are crucial in OSCC progression. Candida albicans ( C. albicans )—frequently pre-sent in the oral potentially malignant disorder (OPMD) lesions and OSCC tissues—promotes malignant transformation. The aim of the study is to verify the mechanisms underlying OSCC car-cinogenesis with C. albicans infection and identify the biomarker for the early detection of OSCC and as the treatment target. The single-cell RNA sequencing analysis (scRNA-seq) was performed to explore the cell subtypes in normal oral mucosa, OPMD, and OSCC tissues. The cell composi-tion changes and oncogenic mechanisms underlying OSCC carcinogenesis with C. albicans infec-tion were investigated. Gene Set Variation Analysis (GSVA) was used to survey the mechanisms underlying OSCC carcinogenesis with and without C. albicans infection. The results revealed spe-cific cell clusters contributing to OSCC carcinogenesis with and without C. albicans infection. The major mechanisms involved in OSCC carcinogenesis without C. albicans infection are the IL2/STAT5, TNFα/NFκB, and TGFβ signaling pathways, whereas those involved in OSCC carcinogenesis with C. albicans infection are the KRAS signaling pathway and E2F target down-stream genes. Finally, stratifin (SFN) was validated to be a specific biomarker of OSCC with C. albicans infection. Thus, the detailed mechanism underlying OSCC carcinogenesis with C. albicans infection was determined and identified the treatment biomarker with potential precision medicine applications.
    Keywords tumor heterogeneity ; tumor microenvironment ; oral squamous cell carcinoma ; oral potentially malignant disorder ; Candida albicans ; single-cell RNA sequencing analysis ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 616
    Language English
    Publishing date 2022-04-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: HLA-G Expression in Human Mesenchymal Stem Cells (MSCs) Is Related to Unique Methylation Pattern in the Proximal Promoter as well as Gene Body DNA

    B. Linju Yen / Hsiao-Lin Hwa / Pei-Ju Hsu / Pei-Min Chen / Li-Tzu Wang / Shih-Sheng Jiang / Ko-Jiunn Liu / Huey-Kang Sytwu / Men-Luh Yen

    International Journal of Molecular Sciences, Vol 21, Iss 5075, p

    2020  Volume 5075

    Abstract: Multipotent human mesenchymal stem cells (MSCs) harbor clinically relevant immunomodulation, and HLA-G, a non-classical MHC class I molecule with highly restricted tissue expression, is one important molecule involved in these processes. Understanding of ...

    Abstract Multipotent human mesenchymal stem cells (MSCs) harbor clinically relevant immunomodulation, and HLA-G, a non-classical MHC class I molecule with highly restricted tissue expression, is one important molecule involved in these processes. Understanding of the natural regulatory mechanisms involved in expression of this elusive molecule has been difficult, with near exclusive reliance on cancer cell lines. We therefore studied the transcriptional control of HLA-G in primary isolated human bone marrow- (BM), human embryonic stem cell-derived (hE-), as well as placenta-derived MSCs (P-MSCs), and found that all 3 types of MSCs express 3 of the 7 HLA-G isoforms at the gene level; however, fibroblasts did not express HLA-G. Protein validation using BM- and P-MSCs demonstrated expression of 2 isoforms including a larger HLA-G-like protein. Interferon-γ (IFN-γ) stimulation upregulated both gene and protein expression in MSCs but not the constitutively expressing JEG-3 cell line. Most interestingly in human MSCs and placental tissue, hypomethylation of CpG islands not only occurs on the HLA-G proximal promoter but also on the gene body as well, a pattern not seen in either of the 2 commonly used choriocarcinoma cell lines which may contribute to the unique HLA-G expression patterns and IFN-γ-responsiveness in MSCs. Our study implicates the importance of using normal cells and tissues for physiologic understanding of tissue-specific transcriptional regulation, and highlight the utility of human MSCs in unraveling the transcriptional regulation of HLA-G for better therapeutic application.
    Keywords mesenchymal stem cells (MSCs) ; human ; HLA-G ; embryonic stem cells (ESCs) ; bone marrow (BM) ; placenta ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 570
    Language English
    Publishing date 2020-07-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Single-Cell Analysis of Different Stages of Oral Cancer Carcinogenesis in a Mouse Model

    Ling-Yu Huang / Yi-Ping Hsieh / Yen-Yun Wang / Daw-Yang Hwang / Shih Sheng Jiang / Wen-Tsung Huang / Wei-Fan Chiang / Ko-Jiunn Liu / Tze-Ta Huang

    International Journal of Molecular Sciences, Vol 21, Iss 8171, p

    2020  Volume 8171

    Abstract: Oral carcinogenesis involves the progression of the normal mucosa into potentially malignant disorders and finally into cancer. Tumors are heterogeneous, with different clusters of cells expressing different genes and exhibiting different behaviors. 4- ... ...

    Abstract Oral carcinogenesis involves the progression of the normal mucosa into potentially malignant disorders and finally into cancer. Tumors are heterogeneous, with different clusters of cells expressing different genes and exhibiting different behaviors. 4-nitroquinoline 1-oxide (4-NQO) and arecoline were used to induce oral cancer in mice, and the main factors for gene expression influencing carcinogenesis were identified through single-cell RNA sequencing analysis. Male C57BL/6J mice were divided into two groups: a control group (receiving normal drinking water) and treatment group (receiving drinking water containing 4-NQO (200 mg/L) and arecoline (500 mg/L)) to induce the malignant development of oral cancer. Mice were sacrificed at 8, 16, 20, and 29 weeks. Except for mice sacrificed at 8 weeks, all mice were treated for 16 weeks and then either sacrificed or given normal drinking water for the remaining weeks. Tongue lesions were excised, and all cells obtained from mice in the 29- and 16-week treatment groups were clustered into 17 groups by using the Louvain algorithm. Cells in subtypes 7 (stem cells) and 9 (keratinocytes) were analyzed through gene set enrichment analysis. Results indicated that their genes were associated with the MYC_targets_v1 pathway, and this finding was confirmed by the presence of cisplatin-resistant nasopharyngeal carcinoma cell lines. These cell subtype biomarkers can be applied for the detection of patients with precancerous lesions, the identification of high-risk populations, and as a treatment target.
    Keywords mouse model ; carcinogenesis ; single-cell RNA sequencing ; oral cancer ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 616
    Language English
    Publishing date 2020-10-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Caffeic acid phenethyl ester causes p21 induction, Akt signaling reduction, and growth inhibition in PC-3 human prostate cancer cells.

    Hui-Ping Lin / Shih Sheng Jiang / Chih-Pin Chuu

    PLoS ONE, Vol 7, Iss 2, p e

    2012  Volume 31286

    Abstract: Caffeic acid phenethyl ester (CAPE) treatment suppressed proliferation, colony formation, and cell cycle progression in PC-3 human prostate cancer cells. CAPE decreased protein expression of cyclin D1, cyclin E, SKP2, c-Myc, Akt1, Akt2, Akt3, total Akt, ... ...

    Abstract Caffeic acid phenethyl ester (CAPE) treatment suppressed proliferation, colony formation, and cell cycle progression in PC-3 human prostate cancer cells. CAPE decreased protein expression of cyclin D1, cyclin E, SKP2, c-Myc, Akt1, Akt2, Akt3, total Akt, mTOR, Bcl-2, Rb, as well as phosphorylation of Rb, ERK1/2, Akt, mTOR, GSK3α, GSK3β, PDK1; but increased protein expression of KLF6 and p21(Cip1). Microarray analysis indicated that pathways involved in cellular movement, cell death, proliferation, and cell cycle were affected by CAPE. Co-treatment of CAPE with chemotherapeutic drugs vinblastine, paclitaxol, and estramustine indicated synergistic suppression effect. CAPE administration may serve as a potential adjuvant therapy for prostate cancer.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2012-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Cytoplasmic LIF reprograms invasive mode to enhance NPC dissemination through modulating YAP1-FAK/PXN signaling

    Shu-Chen Liu / Tien Hsu / Yu-Sun Chang / An-Ko Chung / Shih Sheng Jiang / Chun-Nan OuYang / Chiou-Hwa Yuh / Chuen Hsueh / Ya-Ping Liu / Ngan-Ming Tsang

    Nature Communications, Vol 9, Iss 1, Pp 1-

    2018  Volume 16

    Abstract: Molecular pathways regulating nasopharyngeal carcinoma (NPC) metastasis are unclear. Here they report higher levels of cytoplasmic leukemia inhibitory factor (cLIF) and LIF receptor (LIFR) to correlate with higher metastasis in NPC patients, and show ... ...

    Abstract Molecular pathways regulating nasopharyngeal carcinoma (NPC) metastasis are unclear. Here they report higher levels of cytoplasmic leukemia inhibitory factor (cLIF) and LIF receptor (LIFR) to correlate with higher metastasis in NPC patients, and show cLIF to promote NPC metastasis and vascular dissemination via the YAP1-FAK/PXN axis.
    Keywords Science ; Q
    Language English
    Publishing date 2018-11-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Cytoplasmic LIF reprograms invasive mode to enhance NPC dissemination through modulating YAP1-FAK/PXN signaling

    Shu-Chen Liu / Tien Hsu / Yu-Sun Chang / An-Ko Chung / Shih Sheng Jiang / Chun-Nan OuYang / Chiou-Hwa Yuh / Chuen Hsueh / Ya-Ping Liu / Ngan-Ming Tsang

    Nature Communications, Vol 9, Iss 1, Pp 1-

    2018  Volume 16

    Abstract: Molecular pathways regulating nasopharyngeal carcinoma (NPC) metastasis are unclear. Here they report higher levels of cytoplasmic leukemia inhibitory factor (cLIF) and LIF receptor (LIFR) to correlate with higher metastasis in NPC patients, and show ... ...

    Abstract Molecular pathways regulating nasopharyngeal carcinoma (NPC) metastasis are unclear. Here they report higher levels of cytoplasmic leukemia inhibitory factor (cLIF) and LIF receptor (LIFR) to correlate with higher metastasis in NPC patients, and show cLIF to promote NPC metastasis and vascular dissemination via the YAP1-FAK/PXN axis.
    Keywords Science ; Q
    Language English
    Publishing date 2018-11-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: PTBP1-mediated regulation of AXL mRNA stability plays a role in lung tumorigenesis

    Chun-Yu Cho / Shih-Ying Chung / Shankung Lin / Jhy-Shrian Huang / Yen-Lin Chen / Shih-Sheng Jiang / Li-Chun Cheng / Tsu-Hsiang Kuo / Jong-Ding Lay / Ya-Yu Yang / Gi-Ming Lai / Shuang-En Chuang

    Scientific Reports, Vol 9, Iss 1, Pp 1-

    2019  Volume 12

    Abstract: Abstract AXL is expressed in many types of cancer and promotes cancer cell survival, metastasis and drug resistance. Here, we focus on identifying modulators that regulate AXL at the mRNA level. We have previously observed that the AXL promoter activity ... ...

    Abstract Abstract AXL is expressed in many types of cancer and promotes cancer cell survival, metastasis and drug resistance. Here, we focus on identifying modulators that regulate AXL at the mRNA level. We have previously observed that the AXL promoter activity is inversely correlated with the AXL expression levels, suggesting that post-transcriptional mechanisms exist that down-regulate the expression of AXL mRNA. Here we show that the RNA binding protein PTBP1 (polypyrimidine tract-binding protein) directly targets the 5′-UTR of AXL mRNA in vitro and in vivo. Moreover, we also demonstrate that PTBP1, but not PTBP2, inhibits the expression of AXL mRNA and the RNA recognition motif 1 (RRM1) of PTBP1 is crucial for this interaction. To clarify how PTBP1 regulates AXL expression at the mRNA level, we found that, while the transcription rate of AXL was not significantly different, PTBP1 decreased the stability of AXL mRNA. In addition, over-expression of AXL may counteract the PTBP1-mediated apoptosis. Knock-down of PTBP1 expression could enhance tumor growth in animal models. Finally, PTBP1 was found to be negatively correlated with AXL expression in lung tumor tissues in Oncomine datasets and in tissue micro-array (TMA) analysis. In conclusion, we have identified a molecular mechanism of AXL expression regulation by PTBP1 through controlling the AXL mRNA stability. These findings may represent new thoughts alternative to current approaches that directly inhibit AXL signaling and may eventually help to develop novel therapeutics to avoid cancer metastasis and drug resistance.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2019-11-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Characterization of a transgenic mouse model exhibiting spontaneous lung adenocarcinomas with a metastatic phenotype.

    Hsuen-Wen Chang / Zih-Miao Lin / Min-Ju Wu / Li-Yu Wang / Yen-Hung Chow / Shih Sheng Jiang / Hui-Ju Ch'ang / Vincent Hs Chang

    PLoS ONE, Vol 12, Iss 4, p e

    2017  Volume 0175586

    Abstract: Developing lung cancer in mouse models that display similarities of both phenotype and genotype will undoubtedly provide further and better insights into lung tumor biology. Moreover, a high degree of pathophysiological similarity between lung tumors ... ...

    Abstract Developing lung cancer in mouse models that display similarities of both phenotype and genotype will undoubtedly provide further and better insights into lung tumor biology. Moreover, a high degree of pathophysiological similarity between lung tumors from mouse models and their human counterparts will make it possible to use these mouse models for preclinical tests. Ovine pulmonary adenocarcinomas (OPAs) present the same symptoms as adenocarcinomas in humans and are caused by a betaretrovirus. OPAs have served as an exquisite model of carcinogenesis for human lung adenocarcinomas. In this study, we characterized the histopathology and transcriptome profiles of a jaagsiekte sheep retrovirus (JSRV)-envelope protein (Env) transgenic mouse model with spontaneous lung tumors, and associations of the transcriptome profiles with tumor invasion/metastasis, especially the phenomenon of the epithelial-mesenchymal transition (EMT). Genetic information obtained from an expression array was analyzed using an ingenuity pathways analysis (IPA) and human disease database (MalaCards). By careful examination, several novel EMT-related genes were identified from tumor cells using RT-qPCR, and these genes also scored high in MalaCards. We concluded that the JSRV-Env mouse model could serve as a spontaneous lung adenocarcinoma model with a metastatic phenotype, which will benefit the study of early-onset and progression of lung adenocarcinoma. In addition, it can also be a valuable tool for biomarkers and drug screening, which will be helpful in developing intervention therapies.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2017-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Cdc7-Dbf4-mediated phosphorylation of HSP90-S164 stabilizes HSP90-HCLK2-MRN complex to enhance ATR/ATM signaling that overcomes replication stress in cancer

    An Ning Cheng / Chi-Chen Fan / Yu-Kang Lo / Cheng-Liang Kuo / Hui-Chun Wang / I.-Hsin Lien / Shu-Yu Lin / Chung-Hsing Chen / Shih Sheng Jiang / I.-Shou Chang / Hsueh-Fen Juan / Ping-Chiang Lyu / Alan Yueh-Luen Lee

    Scientific Reports, Vol 7, Iss 1, Pp 1-

    2017  Volume 15

    Abstract: Abstract Cdc7-Dbf4 kinase plays a key role in the initiation of DNA replication and contributes to the replication stress in cancer. The activity of human Cdc7-Dbf4 kinase remains active and acts as an effector of checkpoint under replication stress. ... ...

    Abstract Abstract Cdc7-Dbf4 kinase plays a key role in the initiation of DNA replication and contributes to the replication stress in cancer. The activity of human Cdc7-Dbf4 kinase remains active and acts as an effector of checkpoint under replication stress. However, the downstream targets of Cdc7-Dbf4 contributed to checkpoint regulation and replication stress-support function in cancer are not fully identified. In this work, we showed that aberrant Cdc7-Dbf4 induces DNA lesions that activate ATM/ATR-mediated checkpoint and homologous recombination (HR) DNA repair. Using a phosphoproteome approach, we identified HSP90-S164 as a target of Cdc7-Dbf4 in vitro and in vivo. The phosphorylation of HSP90-S164 by Cdc7-Dbf4 is required for the stability of HSP90-HCLK2-MRN complex and the function of ATM/ATR signaling cascade and HR DNA repair. In clinically, the phosphorylation of HSP90-S164 indeed is increased in oral cancer patients. Our results indicate that aberrant Cdc7-Dbf4 enhances replication stress tolerance by rewiring ATR/ATM mediated HR repair through HSP90-S164 phosphorylation and by promoting recovery from replication stress. We provide a new solution to a subtyping of cancer patients with dominant ATR/HSP90 expression by combining inhibitors of ATR-Chk1, HSP90, or Cdc7 in cancer combination therapy.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2017-12-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: Upregulation of CISD2 augments ROS homeostasis and contributes to tumorigenesis and poor prognosis of lung adenocarcinoma

    Shih-Miao Li / Chung-Hsing Chen / Ya-Wen Chen / Yi-Chen Yen / Wen-Tsen Fang / Fang-Yu Tsai / Junn-Liang Chang / Ying-Ying Shen / Shiu-Feng Huang / Chih-Pin Chuu / I-Shou Chang / Chao A. Hsiung / Shih Sheng Jiang

    Scientific Reports, Vol 7, Iss 1, Pp 1-

    2017  Volume 13

    Abstract: Abstract CISD2 is a redox-sensitive gene critical for normal development and mitochondrial integrity. CISD2 was known to have aberrant expression in several types of human cancers. However, its relation with lung cancer is still not clear. In this study ... ...

    Abstract Abstract CISD2 is a redox-sensitive gene critical for normal development and mitochondrial integrity. CISD2 was known to have aberrant expression in several types of human cancers. However, its relation with lung cancer is still not clear. In this study we found CISD2 mRNA was significantly upregulated in lung adenocarcinoma (ADC) samples, compared with their adjacent normal counterparts, and was correlated with tumor stage, grade, and prognosis based on analysis of clinical specimens-derived expression data in public domain and our validation assay. Cell based assay indicated that CISD2 expression regulated accumulation of reactive oxygen species (ROS), polarization of mitochondrial membrane potential, as well as cell viability, apoptosis, invasiveness, and tumorigenicity. In addition, CISD2 expression was found significantly correlated with stress response/redox signaling genes such as EGR1 and GPX3, while such correlations were also found valid in many public domain data. Taken together, upregulation of CISD2 is involved in an increased antioxidant capacity in response to elevated ROS levels during the formation and progression of lung ADC. The molecular mechanism underlying how CISD2 regulates ROS homeostasis and augments malignancy of lung cancer warrants further investigations.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2017-09-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top