LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: Exploring adsorption capacity and mechanisms involved in cadmium removal from aqueous solutions by biochar derived from euhalophyte

    Shaoqing Ge / Shuai Zhao / Lei Wang / Zhenyong Zhao / Shoule Wang / Changyan Tian

    Scientific Reports, Vol 14, Iss 1, Pp 1-

    2024  Volume 11

    Abstract: Abstract Biochar has shown potential as a sorbent for reducing Cd levels in water. Euhalophytes, which thrive in saline-alkali soils containing high concentrations of metal ions and anions, present an intriguing opportunity for producing biochar with ... ...

    Abstract Abstract Biochar has shown potential as a sorbent for reducing Cd levels in water. Euhalophytes, which thrive in saline-alkali soils containing high concentrations of metal ions and anions, present an intriguing opportunity for producing biochar with inherent metal adsorption properties. This study focused on biochar derived from the euhalophyte Salicornia europaea and aimed to investigate its Cd adsorption capacity through adsorption kinetics and isotherm experiments. The results demonstrated that S. europaea biochar exhibited a high specific surface area, substantial base cation content, and a low negative surface charge, making it a highly effective adsorbent for Cd. The adsorption data fit well with the Langmuir isotherm model, revealing a maximum adsorption capacity of 108.54 mg g−1 at 25 °C. The adsorption process involved both surface adsorption and intraparticle diffusion. The Cd adsorption mechanism on the biochar encompassed precipitation, ion exchange, functional group complexation, and cation-π interactions. Notably, the precipitation of Cd2+ with CO3 2− in the biochar played a dominant role, accounting for 73.7% of the overall removal mechanism. These findings underscore the potential of euhalophytes such as S. europaea as a promising solution for remediating Cd contamination in aquatic environments.
    Keywords Medicine ; R ; Science ; Q
    Subject code 541
    Language English
    Publishing date 2024-01-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: The Effects of Suaeda salsa / Zea mays L. Intercropping on Plant Growth and Soil Chemical Characteristics in Saline Soil

    Shoule Wang / Zhenyong Zhao / Shaoqing Ge / Ke Zhang / Changyan Tian / Wenxuan Mai

    Agriculture, Vol 12, Iss 107, p

    2022  Volume 107

    Abstract: Halophytes possess the capacity to uptake high levels of salt through physiological processes and their root architecture. Here, we investigated whether halophyte/non-halophyte intercropping in saline soil benefits plant growth and contains root-dialogue ...

    Abstract Halophytes possess the capacity to uptake high levels of salt through physiological processes and their root architecture. Here, we investigated whether halophyte/non-halophyte intercropping in saline soil benefits plant growth and contains root-dialogue between interspecific species. Field and pot experiments were conducted to determine the plant biomasses and salt and nutrient distributions in three suaeda ( Suaeda salsa )/maize ( Zea mays L.) intercropping systems, set up by non-barrier, nylon-barrier, and plastic-barrier between plant roots. The suaeda/maize intercropping obviously transferred more Na + to the suaeda root zone and decreased salt and Na + contents. However, the biomass of the non-barrier-treated maize was significantly lower than that of the nylon and plastic barrier-treated maize. There was lower available N content in the soil of the non-barrier treated groups compared with the plastic barrier-treated groups. In addition, the pH was lower, and the available nutrient content was higher in the nylon barrier, which suggested that rhizospheric processes might occur between the two species. Therefore, we concluded that the suaeda/maize intercropping would be beneficial to the salt removal, but it caused an adverse effect for maize growth due to interspecific competition, and also revealed potential rhizospheric effects through the role of roots. This study provides an effective way for the improvement of saline land.
    Keywords maize ; intercropping ; Suaeda salsa ; saline soil ; Agriculture (General) ; S1-972
    Subject code 580
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Tree Height-Diameter Relationships in the Alpine Treeline Ecotone Compared with Those in Closed Forests on Changbai Mountain, Northeastern China

    Xiaoyu Wang / Dapao Yu / Shoule Wang / Bernard J. Lewis / Wangming Zhou / Li Zhou / Limin Dai / Jing-Pin Lei / Mai-He Li

    Forests, Vol 8, Iss 4, p

    2017  Volume 132

    Abstract: Height-diameter relationship is one of the most important stature characteristics of trees. It will change with climatic conditions because height and diameter growth displays different sensitivities to climatic factors such as temperature. Detecting and ...

    Abstract Height-diameter relationship is one of the most important stature characteristics of trees. It will change with climatic conditions because height and diameter growth displays different sensitivities to climatic factors such as temperature. Detecting and understanding changes in the stature of trees growing along altitudinal gradients up to their upper limits can help us to better understand the adaptation strategy of trees under global warming conditions. On Changbai Mountain in northeastern China, height-diameter datasets were collected for 2723 Erman’s birch (Betula ermanii Cham.) in the alpine treeline ecotone in 2006 and 2013, and for 888 Erman’s birch, spruce (Picea jezoensis Siebold & Zucc. Carr.), larch (Larix olgensis A. Henry), and fir (Abies nephrolepis Trautv. ex Maxim.) along an altitudinal gradient below the alpine treeline in 2006. These datasets were utilized to explore both changes in the stature of birch at the alpine treeline over time and variations in tree stature of different tree species across altitudes at a given time point (2006). Results showed that birch saplings (<140 cm in height) became stunted while birches with a height of >140 cm became more tapered in the alpine treeline ecotone. The stature of birch along the altitudinal gradient became more tapered from 1700 to 1900 m above see level (a.s.l.) and then became more stunted from 1900 to 2050 m a.s.l., with 1900 m a.s.l. being the altitudinal inflection point in this pattern. The treeline birch, due to its great temperature magnitude of distribution, displayed higher stature-plasticity in terms of its height-diameter ratio than the lower elevation species studied. The stature of birch is strongly modulated by altitude-related temperature but also co-influenced by other environmental factors such as soil depth and available water, wind speed, and duration and depth of winter snow cover. The high stature-plasticity of birch makes it fare better than other species to resist and adapt to, as well as to survive and develop ...
    Keywords allometric growth ; Betula ermanii ; Erman’s birch ; tree architecture ; tree forms ; tree stature ; treeline ; Plant ecology ; QK900-989
    Subject code 580
    Language English
    Publishing date 2017-04-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top