LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: The Combined Use of Platelet-Rich Plasma Clot Releasate and Allogeneic Human Umbilical Cord Mesenchymal Stem Cells Rescue Glucocorticoid-Induced Osteonecrosis of the Femoral Head

    Yanxue Wang / Shuo Luan / Ze Yuan / Shaoling Wang / Shengnuo Fan / Chao Ma / Shaoling Wu

    Stem Cells International, Vol

    2022  Volume 2022

    Abstract: Glucocorticoid-induced osteonecrosis of the femoral head (ONFH) is a refractory disease. The treatment options for ONFH, especially nonsurgical ones, merit further investigation. To evaluate the combinatorial therapeutic effects of platelet-rich plasma ... ...

    Abstract Glucocorticoid-induced osteonecrosis of the femoral head (ONFH) is a refractory disease. The treatment options for ONFH, especially nonsurgical ones, merit further investigation. To evaluate the combinatorial therapeutic effects of platelet-rich plasma clot releasate (PRCR) and umbilical cord mesenchymal stem cells (UC-MSCs) on glucocorticoid-induced ONFH, a dexamethasone (DEX)-treated cell model and a high-dose methylprednisolone (MPS)-treated rat model were established. Cell counting kit-8 (CCK-8) assay was performed in vitro to determine the optimum dosage of PRCR for UC-MSC viability. The effects of PRCR, UC-MSCs, and PRCR + UC-MSCs on cell viability, apoptosis, migration, and differentiation capacities of DEX-treated bone marrow mesenchymal stem cells (BMSCs) and human umbilical vein endothelial cell (HUVECs) were explored via Transwell assays. Western blotting was conducted to evaluate the expression levels of RUNX2, VEGF, caspase-3, and Bcl-2 in the coculture systems. Ultrasound-guided intra-articular PRCR, UC-MSCs, and PRCR + UC-MSC injections were performed on the ONFH model rats. Microcomputed tomography, histological and immunohistochemical analyses, tartrate-resistant acid phosphatase (TRAP) staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to assess the therapeutic effects of PRCR and UC-MSCs on bone loss and necrosis induced by high-dose MPS. Results of this study revealed that the in vitro application of PRCR, UC-MSCs, and PRCR + UC-MSCs reversed the impaired proliferation and migration capacities and resisted apoptosis of BMSCs and HUVECs induced by DEX. Moreover, the PRCR and UC-MSC application significantly improved the alkaline phosphatase (ALP) and alizarin red (ALR) staining of BMSCs and tube formation capacity of HUVECs and promoted the protein expression of RUNX2 in BMSCs and VEGF in HUVECs. Similarly, in the ONFH rat model, the intra-articular injection of UC-MSCs and PRCR improved the subchondral bone mass parameters; promoted the ...
    Keywords Internal medicine ; RC31-1245
    Subject code 616
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher Hindawi Limited
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Transport of Glial Cell Line-Derived Neurotrophic Factor into Liposomes across the Blood-Brain Barrier

    Shaoling Wu / Guoqi Li / Xiao Li / Caina Lin / Ding Yu / Shuo Luan / Chao Ma

    International Journal of Molecular Sciences, Vol 15, Iss 3, Pp 3612-

    In Vitro and in Vivo Studies

    2014  Volume 3623

    Abstract: Glial cell line-derived neurotrophic factor (GDNF) was encapsulated into liposomes in order to protect it from enzyme degradation in vivo and promote its permeability across the blood-brain barrier (BBB). In this study, GDNF conventional liposomes (GDNF- ... ...

    Abstract Glial cell line-derived neurotrophic factor (GDNF) was encapsulated into liposomes in order to protect it from enzyme degradation in vivo and promote its permeability across the blood-brain barrier (BBB). In this study, GDNF conventional liposomes (GDNF-L) and GDNF target sterically stabilized liposomes (GDNF-SSL-T) were prepared. The average size of liposomes was below 90 nm. A primary model of BBB was established and evaluated by transendothelial electrical resistance (TEER) and permeability. This BBB model was employed to study the permeability of GDNF liposomes in vitro. The results indicated that the liposomes could enhance transport of GDNF across the BBB and GDNF-SSL-T had achieved the best transport efficacy. The distribution of GDNF liposomes was studied in vivo. Free GDNF and GDNF-L were eliminated rapidly in the circulation. GDNF-SSL-T has a prolonged circulation time in the blood and favorable brain delivery. The values of the area under the curve (AUC(0–1 h)) in the brain of GDNF-SSL-T was 8.1 times and 6.8 times more than that of free GDNF and GDNF-L, respectively. These results showed that GDNF-SSL-T realized the aim of targeted delivery of therapeutic proteins to central nervous system.
    Keywords glial cell line-derived neurotrophic factor ; target sterically stabilized liposomes ; blood-brain barrier ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 610
    Language English
    Publishing date 2014-02-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Running Exercise Alleviates Pain and Promotes Cell Proliferation in a Rat Model of Intervertebral Disc Degeneration

    Shuo Luan / Qing Wan / Haijie Luo / Xiao Li / Songjian Ke / Caina Lin / Yuanyuan Wu / Shaoling Wu / Chao Ma

    International Journal of Molecular Sciences, Vol 16, Iss 1, Pp 2130-

    2015  Volume 2144

    Abstract: Chronic low back pain accompanied by intervertebral disk degeneration is a common musculoskeletal disorder. Physical exercise, which is clinically recommended by international guidelines, has proven to be effective for degenerative disc disease (DDD) ... ...

    Abstract Chronic low back pain accompanied by intervertebral disk degeneration is a common musculoskeletal disorder. Physical exercise, which is clinically recommended by international guidelines, has proven to be effective for degenerative disc disease (DDD) patients. However, the mechanism underlying the analgesic effects of physical exercise on DDD remains largely unclear. The results of the present study showed that mechanical withdrawal thresholds of bilateral hindpaw were significantly decreased beginning on day three after intradiscal complete Freund’s adjuvant (CFA) injection and daily running exercise remarkably reduced allodynia in the CFA exercise group beginning at day 28 compared to the spontaneous recovery group (controls). The hindpaw withdrawal thresholds of the exercise group returned nearly to baseline at the end of experiment, but severe pain persisted in the control group. Histological examinations performed on day 70 revealed that running exercise restored the degenerative discs and increased the cell densities of the annulus fibrosus (AF) and nucleus pulposus (NP). Furthermore, immunofluorescence labeling revealed significantly higher numbers of 5-bromo-2-deoxyuridine (BrdU)-positive cells in the exercise group on days 28, 42, 56 and 70, which indicated more rapid proliferation compared to the control at the corresponding time points. Taken together, these results suggest that running exercise might alleviate the mechanical allodynia induced by intradiscal CFA injection via disc repair and cell proliferation, which provides new evidence for future clinical use.
    Keywords degenerative disc disease (DDD) ; running exercise ; cell proliferation ; disc regeneration ; Chemistry ; QD1-999 ; Science ; Q
    Subject code 796
    Language English
    Publishing date 2015-01-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top