LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: Estimating plant area density of individual trees from discrete airborne laser scanning data using intensity information and path length distribution

    Ge Gao / Jianbo Qi / Simei Lin / Ronghai Hu / Huaguo Huang

    International Journal of Applied Earth Observations and Geoinformation, Vol 118, Iss , Pp 103281- (2023)

    2023  

    Abstract: Plant area density (PAD) of individual trees is an important structural indicator related to tree growth status, stress levels due to pests and diseases, photosynthesis potential, and evapotranspiration. Airborne laser scanning (ALS) provides ... ...

    Abstract Plant area density (PAD) of individual trees is an important structural indicator related to tree growth status, stress levels due to pests and diseases, photosynthesis potential, and evapotranspiration. Airborne laser scanning (ALS) provides unprecedented 3D information for mapping forest canopy parameters. Previous studies mainly focused on mapping stand-level and 2D leaf area index. This study proposes a method to estimate PAD from discrete and multiple return ALS data at individual tree scales. The proposed method uses path length distribution to eliminate crown-shape-induced clumping, as well as intensity information to estimate crown transmittance from relative low-density points. The path length distribution is derived from the 3D crown boundary contours created by an alpha shape algorithm, which explicitly considers the non-uniform LiDAR pulse penetration distances. Pulse intensity is calibrated with the nearest pure-ground pulse to mitigate the need for prior leaf and ground reflectance information, which can be used in areas with a heterogeneous background. The proposed method was evaluated both in virtual experiments as well as with terrestrial laser scanning (TLS) data. The virtual experiments used the large-scale remote sensing data and image simulation model (LESS) to simulate virtual ALS scanning data based on abstract and realistic canopies. Results showed that the ALS-derived PAD is highly accurate, with RMSE less than 0.02 and R2 > 0.99 for the abstract sphere and cube crowns, and RMSE = 0.19 and R2 = 0.578 for the realistic crowns. The comparison with TLS of a birch plot shows that the ALS-derived PAD is consistent with those derived from TLS, with RMSE = 0.14 and R2 = 0.46. This study demonstrated that using the full intensity and geometry information of a point cloud is capable of generating high-resolution forest parameters from ALS data.
    Keywords Physical geography ; GB3-5030 ; Environmental sciences ; GE1-350
    Subject code 333
    Language English
    Publishing date 2023-04-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Effects of Mixture Mode on the Canopy Bidirectional Reflectance of Coniferous–Broadleaved Mixed Plantations

    Zijing He / Simei Lin / Kunjian Wen / Wenqian Hao / Ling Chen

    Forests, Vol 13, Iss 235, p

    2022  Volume 235

    Abstract: One of the main initiatives for China to achieve the goal of being carbon neutral before 2060 is transforming monocultures into mixed plantations in subtropical China, because mixed forests possess a higher quality than monocultures in various ways. Very ...

    Abstract One of the main initiatives for China to achieve the goal of being carbon neutral before 2060 is transforming monocultures into mixed plantations in subtropical China, because mixed forests possess a higher quality than monocultures in various ways. Very high spatial resolution (VHR) satellite imagery is very promising to precisely monitor the transformation process under the premise of clarifying the canopy reflectance anisotropy of mixed plantations. However, it is almost impossible to understand the canopy reflectance anisotropy of mixed plantations with real satellite data due to the extreme lack of multiangular VHR satellite images. In this study, the effects of the mixture mode on the canopy bidirectional reflectance factor (BRF) were comprehensively analyzed with simulated VHR images. The three-dimensional (3D) Discrete Anisotropic Radiative Transfer model (DART) was used to construct a pure coniferous scene, a pure broadleaved scene, and 27 coniferous–broadleaved mixed plantation scenes containing 3 mixture patterns (i.e., mixed by single trees, mixed by stripes, and mixed by patches) and 9 mixing proportions (i.e., from 10% to 90% with the interval of 10%), and to simulate red (R) and near-infrared (NIR) VHR images for these 3D scenes at both the solar principal plane (SPP) and perpendicular plane (PP) under different solar-viewing geometries. Negative correlations were generally found between the canopy BRF and the ratio of conifers in a mixed stand. The anisotropy of conifer dominated plantations is more prominent than broadleaf dominated plantations, especially for the single tree mixture. Although the level of anisotropy is much lower for PP than SPP, it should not be ignored, especially for the R band. Observations under large viewing zenith angles at PP are more preferred to study the effect of mixing proportions, followed by forward observations at SPP. The R band image has higher potential to distinguish mixture patterns for broadleaf-dominated situations, while the NIR band image has a higher ...
    Keywords DART model ; canopy BRF ; coniferous–broadleaved mixed plantations ; mixture mode ; Plant ecology ; QK900-989
    Subject code 333
    Language English
    Publishing date 2022-02-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Characterizing Post-Fire Forest Structure Recovery in the Great Xing’an Mountain Using GEDI and Time Series Landsat Data

    Simei Lin / Huiqing Zhang / Shangbo Liu / Ge Gao / Linyuan Li / Huaguo Huang

    Remote Sensing, Vol 15, Iss 3107, p

    2023  Volume 3107

    Abstract: Understanding post-fire forest recovery is critical to the study of forest carbon dynamics. Many previous studies have used multispectral imagery to estimate post-fire recovery, yet post-fire forest structural development has rarely been evaluated in the ...

    Abstract Understanding post-fire forest recovery is critical to the study of forest carbon dynamics. Many previous studies have used multispectral imagery to estimate post-fire recovery, yet post-fire forest structural development has rarely been evaluated in the Great Xing’an Mountain. In this study, we extracted the historical fire events from 1987 to 2019 based on a classification of Landsat imagery and assessed post-fire forest structure for these burned patches using Global Ecosystem Dynamics Investigation (GEDI)-derived metrics from 2019 to 2021. Two drivers were assessed for the influence on post-fire structure recovery, these being pre-fire canopy cover (i.e., dense forest and open forest) and burn severity levels (i.e., low, moderate, and high). We used these burnt patches to establish a 25-year chronosequence of forest structural succession by a space-for-time substitution method. Our result showed that the structural indices suggested delayed recovery following the fire, indicating a successional process from the decomposition of residual structures to the regeneration of new tree species in the post-fire forest. Across the past 25-years, the dense forest tends toward greater recovery than open forest, and the recovery rate was faster for low severity, followed by moderate severity and high severity. Specifically, in the recovery trajectory, the recovery indices were 21.7% and 17.4% for dense forest and open forest, and were 27.1%, 25.8%, and 25.4% for low, moderate, and high burn severity, respectively. Additionally, a different response to the fire was found in the canopy structure and height structure since total canopy cover (TCC) and plant area index (PAI) recovered faster than relative height (i.e., RH75 and RH95). Our results provide valuable information on forest structural restoration status, that can be used to support the formulation of post-fire forest management strategies in Great Xing’an Mountain.
    Keywords GEDI metrics ; time-series Landsat data ; post-fire structure recovery ; burn severity ; pre-fire canopy cover ; Science ; Q
    Subject code 550
    Language English
    Publishing date 2023-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top