LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: The Complement System in Kidney Transplantation

    Donata Santarsiero / Sistiana Aiello

    Cells, Vol 12, Iss 791, p

    2023  Volume 791

    Abstract: Kidney transplantation is the therapy of choice for patients who suffer from end-stage renal diseases. Despite improvements in surgical techniques and immunosuppressive treatments, long-term graft survival remains a challenge. A large body of evidence ... ...

    Abstract Kidney transplantation is the therapy of choice for patients who suffer from end-stage renal diseases. Despite improvements in surgical techniques and immunosuppressive treatments, long-term graft survival remains a challenge. A large body of evidence documented that the complement cascade, a part of the innate immune system, plays a crucial role in the deleterious inflammatory reactions that occur during the transplantation process, such as brain or cardiac death of the donor and ischaemia/reperfusion injury. In addition, the complement system also modulates the responses of T cells and B cells to alloantigens, thus playing a crucial role in cellular as well as humoral responses to the allograft, which lead to damage to the transplanted kidney. Since several drugs that are capable of inhibiting complement activation at various stages of the complement cascade are emerging and being developed, we will discuss how these novel therapies could have potential applications in ameliorating outcomes in kidney transplantations by preventing the deleterious effects of ischaemia/reperfusion injury, modulating the adaptive immune response, and treating antibody-mediated rejection.
    Keywords complement activation ; kidney transplantation ; ischaemia/reperfusion injury ; delayed graft function ; alloresponse ; antibody-mediated rejection ; Biology (General) ; QH301-705.5
    Subject code 610
    Language English
    Publishing date 2023-03-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Lysophosphatidic Acid

    Sistiana Aiello / Federica Casiraghi

    Cells, Vol 10, Iss 1390, p

    Promoter of Cancer Progression and of Tumor Microenvironment Development. A Promising Target for Anticancer Therapies?

    2021  Volume 1390

    Abstract: Increased expression of the enzyme autotaxin (ATX) and the consequently increased levels of its product, lysophosphatidic acid (LPA), have been reported in several primary tumors. The role of LPA as a direct modulator of tumor cell functions—motility, ... ...

    Abstract Increased expression of the enzyme autotaxin (ATX) and the consequently increased levels of its product, lysophosphatidic acid (LPA), have been reported in several primary tumors. The role of LPA as a direct modulator of tumor cell functions—motility, invasion and migration capabilities as well as resistance to apoptotic death—has been recognized by numerous studies over the last two decades. Notably, evidence has recently been accumulating that shows that LPA also contributes to the development of the tumor microenvironment (TME). Indeed, LPA plays a crucial role in inducing angiogenesis and lymphangiogenesis, triggering cellular glycolytic shift and stimulating intratumoral fibrosis. In addition, LPA helps tumoral cells to escape immune surveillance. Treatments that counter the TME components, in order to deprive cancer cells of their crucial support, have been emerging among the promising new anticancer therapies. This review aims to summarize the latest knowledge on how LPA influences both tumor cell functions and the TME by regulating the activity of its different elements, highlighting why and how LPA is worth considering as a molecular target for new anticancer therapies.
    Keywords lysophosphatidic acid ; autotaxin ; cancer ; tumor microenvironment ; fibrosis ; immune escape ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2021-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Extracellular vesicles derived from T regulatory cells suppress T cell proliferation and prolong allograft survival

    Sistiana Aiello / Federica Rocchetta / Lorena Longaretti / Silvia Faravelli / Marta Todeschini / Linda Cassis / Francesca Pezzuto / Susanna Tomasoni / Nadia Azzollini / Marilena Mister / Caterina Mele / Sara Conti / Matteo Breno / Giuseppe Remuzzi / Marina Noris / Ariela Benigni

    Scientific Reports, Vol 7, Iss 1, Pp 1-

    2017  Volume 19

    Abstract: Abstract We have previously shown that rat allogeneic DC, made immature by adenoviral gene transfer of the dominant negative form of IKK2, gave rise in-vitro to a unique population of CD4+CD25− regulatory T cells (dnIKK2-Treg). These cells inhibited ... ...

    Abstract Abstract We have previously shown that rat allogeneic DC, made immature by adenoviral gene transfer of the dominant negative form of IKK2, gave rise in-vitro to a unique population of CD4+CD25− regulatory T cells (dnIKK2-Treg). These cells inhibited Tcell response in-vitro, without needing cell-to-cell contact, and induced kidney allograft survival prolongation in-vivo. Deep insight into the mechanisms behind dnIKK2-Treg-induced suppression of Tcell proliferation remained elusive. Here we document that dnIKK2-Treg release extracellular vesicles (EV) riched in exosomes, fully accounting for the cell-contact independent immunosuppressive activity of parent cells. DnIKK2-Treg-EV contain a unique molecular cargo of specific miRNAs and iNOS, which, once delivered into target cells, blocked cell cycle progression and induced apoptosis. DnIKK2-Treg-EV-exposed T cells were in turn converted into regulatory cells. Notably, when administered in-vivo, dnIKK2-Treg-EV prolonged kidney allograft survival. DnIKK2-Treg-derived EV could be a tool for manipulating the immune system and for discovering novel potential immunosuppressive molecules in the context of allotransplantation.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2017-09-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top