LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 5 of total 5

Search options

  1. Article ; Online: Multi-level perception fusion dehazing network

    Xiaohua Wu / Zenglu Li / Xiaoyu Guo / Songyang Xiang / Yao Zhang

    PLoS ONE, Vol 18, Iss

    2023  Volume 10

    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2023-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Multi-level perception fusion dehazing network.

    Xiaohua Wu / Zenglu Li / Xiaoyu Guo / Songyang Xiang / Yao Zhang

    PLoS ONE, Vol 18, Iss 10, p e

    2023  Volume 0285137

    Abstract: Image dehazing models are critical in improving the recognition and classification capabilities of image-related artificial intelligence systems. However, existing methods often ignore the limitations of receptive field size during feature extraction and ...

    Abstract Image dehazing models are critical in improving the recognition and classification capabilities of image-related artificial intelligence systems. However, existing methods often ignore the limitations of receptive field size during feature extraction and the loss of important information during network sampling, resulting in incomplete or structurally flawed dehazing outcomes. To address these challenges, we propose a multi-level perception fusion dehazing network (MPFDN) that effectively integrates feature information across different scales, expands the perceptual field of the network, and fully extracts the spatial background information of the image. Moreover, we employ an error feedback mechanism and a feature compensator to address the loss of features during the image dehazing process. Finally, we subtract the original hazy image from the generated residual image to obtain a high-quality dehazed image. Based on extensive experimentation, our proposed method has demonstrated outstanding performance not only on synthesizing dehazing datasets, but also on non-homogeneous haze datasets.
    Keywords Medicine ; R ; Science ; Q
    Subject code 006
    Language English
    Publishing date 2023-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Changing Relationships between Nitrogen Content and Leaf Spectral Characteristics of Moso Bamboo Leaves under Pantana phyllostachysae Chao Stress

    Zhanghua Xu / Hui Yu / Bin Li / Zhenbang Hao / Yifan Li / Songyang Xiang / Xuying Huang / Zenglu Li / Xiaoyu Guo

    Forests, Vol 13, Iss 1752, p

    2022  Volume 1752

    Abstract: Nitrogen is an important indicator of vegetation health, but the relationship between changes in the leaf nitrogen content of Moso bamboo leaves under Pantana phyllostachysae Chao (PPC) stress and leaf spectra remains unclear. We analyzed the ... ...

    Abstract Nitrogen is an important indicator of vegetation health, but the relationship between changes in the leaf nitrogen content of Moso bamboo leaves under Pantana phyllostachysae Chao (PPC) stress and leaf spectra remains unclear. We analyzed the relationship between the leaf nitrogen content and leaf spectra of Moso bamboo leaves under PPC stress to investigate whether the relationship could be used to detect pests and prevent their spread. We measured the nitrogen content and leaf spectra of Moso bamboo leaves under different damage levels, identified spectral indicators that were correlated with leaf nitrogen content (by removing the envelope and first-order differentiation of the raw spectra), and estimated leaf nitrogen content from the spectral data using regression models. Leaf nitrogen content decreased with increasing pest damage, and the leaf spectral curves changed, with the “green peak” and “red valley” in the visible range disappearing and the slope of the spectral curve decreasing. The wavelength region with the strongest correlation between the nitrogen content and spectral characteristics changed significantly with increasing pest damage, and the correlation in the red-edge region gradually decreased. The fits of nitrogen-content estimation models tended to decrease and then increase with increasing pest damage and were worst among leaves in the moderate damage state (Mo). A disordered relationship between nitrogen content and spectral characteristics indicated possible PPC damage. The degree of disorder was greatest in the Mo state. This study provides theoretical support for remote sensing monitoring of PPC hazards.
    Keywords Pantana phyllostachysae Chao ; Moso bamboo ; nitrogen content ; spectral characteristics ; pest damage ; regression model ; Plant ecology ; QK900-989
    Subject code 580
    Language English
    Publishing date 2022-10-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Retrieving chlorophyll content and equivalent water thickness of Moso bamboo (Phyllostachys pubescens) forests under Pantana phyllostachysae Chao-induced stress from Sentinel-2A/B images in a multiple LUTs-based PROSAIL framework

    Zhanghua Xu / Anqi He / Yiwei Zhang / Zhenbang Hao / Yifan Li / Songyang Xiang / Bin Li / Lingyan Chen / Hui Yu / Wanling Shen / Xuying Huang / Xiaoyu Guo / Zenglu Li

    Forest Ecosystems, Vol 10, Iss , Pp 100108- (2023)

    2023  

    Abstract: Biochemical components of Moso bamboo (Phyllostachys pubescens) are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem. The coupled PROSPECT with SAIL (PROSAIL) radiative ... ...

    Abstract Biochemical components of Moso bamboo (Phyllostachys pubescens) are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem. The coupled PROSPECT with SAIL (PROSAIL) radiative transfer model is widely used for vegetation biochemical component content inversion. However, the presence of leaf-eating pests, such as Pantana phyllostachysae Chao (PPC), weakens the performance of the model for estimating biochemical components of Moso bamboo and thus must be considered. Therefore, this study considered pest-induced stress signals associated with Sentinel-2A/B images and field data and established multiple sets of biochemical canopy reflectance look-up tables (LUTs) based on the PROSAIL framework by setting different parameter ranges according to infestation levels. Quantitative inversions of leaf area index (LAI), leaf chlorophyll content (LCC), and leaf equivalent water thickness (LEWT) were derived. The scale conversions from LCC to canopy chlorophyll content (CCC) and LEWT to canopy equivalent water thickness (CEWT) were calculated. The results showed that LAI, CCC, and CEWT were inversely related with PPC-induced stress. When applying multiple LUTs, the p-values were <0.01; the R2 values for LAI, CCC, and CEWT were 0.71, 0.68, and 0.65 with root mean square error (RMSE) (normalized RMSE, NRMSE) values of 0.38 (0.16), 17.56 μg·cm‒2 (0.20), and 0.02 cm (0.51), respectively. Compared to the values obtained for the traditional PROSAIL model, for October, R2 values increased by 0.05 and 0.10 and NRMSE decreased by 0.09 and 0.02 for CCC and CEWT, respectively and RMSE decreased by 0.35 μg·cm‒2 for CCC. The feasibility of the inverse strategy for integrating pest-induced stress factors into the PROSAIL model, while establishing multiple LUTs under different pest-induced damage levels, was successfully demonstrated and can potentially enhance future vegetation parameter inversion and monitoring of bamboo forest health and ecosystems.
    Keywords Moso bamboo ; Chlorophyll content ; Equivalent water thickness ; PROSAIL model ; Multiple LUTs ; Pantana phyllostachysae Chao ; Ecology ; QH540-549.5
    Language English
    Publishing date 2023-01-01T00:00:00Z
    Publisher KeAi Communications Co., Ltd.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Monitoring the Severity of Pantana phyllostachysae Chao Infestation in Moso Bamboo Forests Based on UAV Multi-Spectral Remote Sensing Feature Selection

    Zhanghua Xu / Qi Zhang / Songyang Xiang / Yifan Li / Xuying Huang / Yiwei Zhang / Xin Zhou / Zenglu Li / Xiong Yao / Qiaosi Li / Xiaoyu Guo

    Forests, Vol 13, Iss 418, p

    2022  Volume 418

    Abstract: In recent years, the rapid development of unmanned aerial vehicle (UAV) remote sensing technology has provided a new means to efficiently monitor forest resources and effectively prevent and control pests and diseases. This study aims to develop a ... ...

    Abstract In recent years, the rapid development of unmanned aerial vehicle (UAV) remote sensing technology has provided a new means to efficiently monitor forest resources and effectively prevent and control pests and diseases. This study aims to develop a detection model to study the damage caused to Moso bamboo forests by Pantana phyllostachysae Chao (PPC), a major leaf-eating pest, at 5 cm resolution. Damage sensitive features were extracted from multispectral images acquired by UAVs and used to train detection models based on support vector machines (SVM), random forests (RF), and extreme gradient boosting tree (XGBoost) machine learning algorithms. The overall detection accuracy (OA) and Kappa coefficient of SVM, RF, and XGBoost were 81.95%, 0.733, 85.71%, 0.805, and 86.47%, 0.811, respectively. Meanwhile, the detection accuracies of SVM, RF, and XGBoost were 78.26%, 76.19%, and 80.95% for healthy, 75.00%, 83.87%, and 79.17% for mild damage, 83.33%, 86.49%, and 85.00% for moderate damage, and 82.5%, 90.91%, and 93.75% for severe damage Moso bamboo, respectively. Overall, XGBoost exhibited the best detection performance, followed by RF and SVM. Thus, the study findings provide a technical reference for the regional monitoring and control of PPC in Moso bamboo.
    Keywords UAV multispectral remote sensing ; Moso bamboo forest ; Pantana phyllostachysae Chao ; feature selection ; detection model ; Plant ecology ; QK900-989
    Subject code 629
    Language English
    Publishing date 2022-03-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top