LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 4 of total 4

Search options

  1. Article ; Online: A role for glial fibrillary acidic protein (GFAP)-expressing cells in the regulation of gonadotropin-releasing hormone (GnRH) but not arcuate kisspeptin neuron output in male mice

    Charlotte Vanacker / R Anthony Defazio / Charlene M Sykes / Suzanne M Moenter

    eLife, Vol

    2021  Volume 10

    Abstract: GnRH neurons are the final central neural output regulating fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (KNDy neurons) are considered the main regulator of GnRH output. GnRH and KNDy neurons are surrounded by astrocytes, which can ... ...

    Abstract GnRH neurons are the final central neural output regulating fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (KNDy neurons) are considered the main regulator of GnRH output. GnRH and KNDy neurons are surrounded by astrocytes, which can modulate neuronal activity and communicate over distances. Prostaglandin E2 (PGE2), synthesized primarily by astrocytes, increases GnRH neuron activity and downstream pituitary release of luteinizing hormone (LH). We hypothesized that glial fibrillary acidic protein (GFAP)-expressing astrocytes play a role in regulating GnRH and/or KNDy neuron activity and LH release. We used adeno-associated viruses to target designer receptors exclusively activated by designer drugs (DREADDs) to GFAP-expressing cells to activate Gq- or Gi-mediated signaling. Activating Gq signaling in the preoptic area, near GnRH neurons, but not in the arcuate, increases LH release in vivo and GnRH firing in vitro via a mechanism in part dependent upon PGE2. These data suggest that astrocytes can activate GnRH/LH release in a manner independent of KNDy neurons.
    Keywords reproductive biology ; GnRH ; neuroendocrinology ; LH ; kisspeptin ; hypothalamus ; Medicine ; R ; Science ; Q ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2021-07-01T00:00:00Z
    Publisher eLife Sciences Publications Ltd
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Firing patterns of gonadotropin-releasing hormone neurons are sculpted by their biologic state

    Jonathon Penix / R. Anthony DeFazio / Eden A. Dulka / Santiago Schnell / Suzanne M. Moenter

    Royal Society Open Science, Vol 7, Iss

    2020  Volume 8

    Abstract: Gonadotropin-releasing hormone (GnRH) neurons form the final pathway for the central neuronal control of fertility. GnRH is released in pulses that vary in frequency in females, helping drive hormonal changes of the reproductive cycle. In the common ... ...

    Abstract Gonadotropin-releasing hormone (GnRH) neurons form the final pathway for the central neuronal control of fertility. GnRH is released in pulses that vary in frequency in females, helping drive hormonal changes of the reproductive cycle. In the common fertility disorder polycystic ovary syndrome (PCOS), persistent high-frequency hormone release is associated with disrupted cycles. We investigated long- and short-term action potential patterns of GnRH neurons in brain slices before and after puberty in female control and prenatally androgenized (PNA) mice, which mimic aspects of PCOS. A Monte Carlo (MC) approach was used to randomize action potential interval order. Dataset distributions were analysed to assess (i) if organization persists in GnRH neuron activity in vitro, and (ii) to determine if any organization changes with development and/or PNA treatment. GnRH neurons in adult control, but not PNA, mice produce long-term patterns different from MC distributions. Short-term patterns differ from MC distributions before puberty but become absorbed into the distributions with maturation, and the distributions narrow. These maturational changes are blunted by PNA treatment. Firing patterns of GnRH neurons in brain slices thus maintain organization dictated at least in part by the biologic status of the source and are disrupted in models of disease.
    Keywords monte carlo ; polycystic ovary syndrome ; androgen ; puberty ; action potential ; Science ; Q
    Subject code 612
    Language English
    Publishing date 2020-08-01T00:00:00Z
    Publisher The Royal Society
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Protocol to extract actively translated mRNAs from mouse hypothalamus by translating ribosome affinity purification

    Xingfa Han / Laura L. Burger / David Garcia-Galiano / Suzanne M. Moenter / Martin G. Myers, Jr, / David P. Olson / Carol F. Elias

    STAR Protocols, Vol 2, Iss 2, Pp 100589- (2021)

    2021  

    Abstract: Summary: Here, we present an in-depth protocol for extracting ribosome-bound mRNAs in low-abundance cells of hypothalamic nuclei. mRNAs are extracted from the micropunched tissue using refined translating ribosome affinity purification. Isolated RNAs can ...

    Abstract Summary: Here, we present an in-depth protocol for extracting ribosome-bound mRNAs in low-abundance cells of hypothalamic nuclei. mRNAs are extracted from the micropunched tissue using refined translating ribosome affinity purification. Isolated RNAs can be used for sequencing or transcript quantification. This protocol enables the identification of actively translated mRNAs in varying physiological states and can be modified for use in any neuronal subpopulation labeled with a ribo-tag. We use leptin receptor-expressing neurons as an example to illustrate the protocol.For complete details on the use and execution of this protocol, please refer to Han et al. (2020).
    Keywords Gene Expression ; Neuroscience ; Protein Biochemistry ; Science (General) ; Q1-390
    Language English
    Publishing date 2021-06-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Genetic dissection of the different roles of hypothalamic kisspeptin neurons in regulating female reproduction

    Luhong Wang / Charlotte Vanacker / Laura L Burger / Tammy Barnes / Yatrik M Shah / Martin G Myers / Suzanne M Moenter

    eLife, Vol

    2019  Volume 8

    Abstract: The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Estradiol induces negative feedback on pulsatile GnRH/luteinizing hormone (LH) release and positive feedback generating preovulatory GnRH/LH surges. Negative and ... ...

    Abstract The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Estradiol induces negative feedback on pulsatile GnRH/luteinizing hormone (LH) release and positive feedback generating preovulatory GnRH/LH surges. Negative and positive feedbacks are postulated to be mediated by kisspeptin neurons in arcuate and anteroventral periventricular (AVPV) nuclei, respectively. Kisspeptin-specific ERα knockout mice exhibit disrupted LH pulses and surges. This knockout approach is neither location-specific nor temporally controlled. We utilized CRISPR-Cas9 to disrupt ERα in adulthood. Mice with ERα disruption in AVPV kisspeptin neurons have typical reproductive cycles but blunted LH surges, associated with decreased excitability of these neurons. Mice with ERα knocked down in arcuate kisspeptin neurons showed disrupted cyclicity, associated with increased glutamatergic transmission to these neurons. These observations suggest that activational effects of estradiol regulate surge generation and maintain cyclicity through AVPV and arcuate kisspeptin neurons, respectively, independent from its role in the development of hypothalamic kisspeptin neurons or puberty onset.
    Keywords kisspeptin ; reproduction ; GnRH ; estrogen receptor alpha ; neuroendocrine ; CRISPR-Cas9 ; Medicine ; R ; Science ; Q ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2019-04-01T00:00:00Z
    Publisher eLife Sciences Publications Ltd
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top