LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Your last searches

  1. AU="Szczepanczyk, Marek J"
  2. AU="Boregowda, Siddaraju"
  3. AU="Lomidzew, D."

Search results

Result 1 - 2 of total 2

Search options

  1. Book ; Online: Machine-learning non-stationary noise out of gravitational wave detectors

    Vajente, Gabriele / Huang, Yiwen / Isi, Maximiliano / Driggers, Jenne C. / Kissel, Jeffrey S. / Szczepanczyk, Marek J. / Vitale, Salvatore

    2019  

    Abstract: Signal extraction out of background noise is a common challenge in high precision physics experiments, where the measurement output is often a continuous data stream. To improve the signal to noise ratio of the detection, witness sensors are often used ... ...

    Abstract Signal extraction out of background noise is a common challenge in high precision physics experiments, where the measurement output is often a continuous data stream. To improve the signal to noise ratio of the detection, witness sensors are often used to independently measure background noises and subtract them from the main signal. If the noise coupling is linear and stationary, optimal techniques already exist and are routinely implemented in many experiments. However, when the noise coupling is non-stationary, linear techniques often fail or are sub-optimal. Inspired by the properties of the background noise in gravitational wave detectors, this work develops a novel algorithm to efficiently characterize and remove non-stationary noise couplings, provided there exist witnesses of the noise source and of the modulation. In this work, the algorithm is described in its most general formulation, and its efficiency is demonstrated with examples from the data of the Advanced LIGO gravitational wave observatory, where we could obtain an improvement of the detector gravitational wave reach without introducing any bias on the source parameter estimation.
    Keywords General Relativity and Quantum Cosmology ; Astrophysics - Instrumentation and Methods for Astrophysics ; Computer Science - Machine Learning ; Physics - Data Analysis ; Statistics and Probability ; Physics - Instrumentation and Detectors
    Subject code 006
    Publishing date 2019-11-20
    Publishing country us
    Document type Book ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Point absorbers in Advanced LIGO.

    Brooks, Aidan F / Vajente, Gabriele / Yamamoto, Hiro / Abbott, Rich / Adams, Carl / Adhikari, Rana X / Ananyeva, Alena / Appert, Stephen / Arai, Koji / Areeda, Joseph S / Asali, Yasmeen / Aston, Stuart M / Austin, Corey / Baer, Anne M / Ball, Matthew / Ballmer, Stefan W / Banagiri, Sharan / Barker, David / Barsotti, Lisa /
    Bartlett, Jeffrey / Berger, Beverly K / Betzwieser, Joseph / Bhattacharjee, Dripta / Billingsley, Garilynn / Biscans, Sebastien / Blair, Carl D / Blair, Ryan M / Bode, Nina / Booker, Phillip / Bork, Rolf / Bramley, Alyssa / Brown, Daniel D / Buikema, Aaron / Cahillane, Craig / Cannon, Kipp C / Cao, Huy Tuong / Chen, Xu / Ciobanu, Alexei A / Clara, Filiberto / Compton, Camilla / Cooper, Sam J / Corley, Kenneth R / Countryman, Stefan T / Covas, Pep B / Coyne, Dennis C / Datrier, Laurence E / Davis, Derek / Difronzo, Chiara D / Dooley, Katherine L / Driggers, Jenne C / Dupej, Peter / Dwyer, Sheila E / Effler, Anamaria / Etzel, Todd / Evans, Matthew / Evans, Tom M / Feicht, Jon / Fernandez-Galiana, Alvaro / Fritschel, Peter / Frolov, Valery V / Fulda, Paul / Fyffe, Michael / Giaime, Joe A / Giardina, Dwayne D / Godwin, Patrick / Goetz, Evan / Gras, Slawomir / Gray, Corey / Gray, Rachel / Green, Anna C / Gupta, Anchal / Gustafson, Eric K / Gustafson, Dick / Hall, Evan / Hanks, Jonathan / Hanson, Joe / Hardwick, Terra / Hasskew, Raine K / Heintze, Matthew C / Helmling-Cornell, Adrian F / Holland, Nathan A / Izmui, Kiamu / Jia, Wenxuan / Jones, Jeff D / Kandhasamy, Shivaraj / Karki, Sudarshan / Kasprzack, Marie / Kawabe, Keita / Kijbunchoo, Nutsinee / King, Peter J / Kissel, Jeffrey S / Kumar, Rahul / Landry, Michael / Lane, Benjamin B / Lantz, Brian / Laxen, Michael / Lecoeuche, Yannick K / Leviton, Jessica / Jian, Liu / Lormand, Marc / Lundgren, Andrew P / Macas, Ronaldas / Macinnis, Myron / Macleod, Duncan M / Mansell, Georgia L / Marka, Szabolcs / Marka, Zsuzsanna / Martynov, Denis V / Mason, Ken / Massinger, Thomas J / Matichard, Fabrice / Mavalvala, Nergis / McCarthy, Richard / McClelland, David E / McCormick, Scott / McCuller, Lee / McIver, Jessica / McRae, Terry / Mendell, Gregory / Merfeld, Kara / Merilh, Edmond L / Meylahn, Fabian / Mistry, Timesh / Mittleman, Richard / Moreno, Gerardo / Mow-Lowry, Conor M / Mozzon, Simone / Mullavey, Adam / Nelson, Timothy J / Nguyen, Philippe / Nuttall, Laura K / Oberling, Jason / Oram, Richard J / Osthelder, Charles / Ottaway, David J / Overmier, Harry / Palamos, Jordan R / Parker, William / Payne, Ethan / Pele, Arnaud / Penhorwood, Reilly / Perez, Carlos J / Pirello, Marc / Radkins, Hugh / Ramirez, Karla E / Richardson, Jonathan W / Riles, Keith / Robertson, Norna A / Rollins, Jameson G / Romel, Chandra L / Romie, Janeen H / Ross, Michael P / Ryan, Kyle / Sadecki, Travis / Sanchez, Eduardo J / Sanchez, Luis E / Tiruppatturrajamanikkam, Saravanan R / Savage, Richard L / Schaetzl, Dean / Schnabel, Roman / Schofield, Robert M / Schwartz, Eyal / Sellers, Danny / Shaffer, Thomas / Sigg, Daniel / Slagmolen, Bram J / Smith, Joshua R / Soni, Siddharth / Sorazu, Borja / Spencer, Andrew P / Strain, Ken A / Sun, Ling / Szczepanczyk, Marek J / Thomas, Michael / Thomas, Patrick / Thorne, Keith A / Toland, Karl / Torrie, Calum I / Traylor, Gary / Tse, Maggie / Urban, Alexander L / Valdes, Guillermo / Vander-Hyde, Daniel C / Veitch, Peter J / Venkateswara, Krishna / Venugopalan, Gautam / Viets, Aaron D / Vo, Thomas / Vorvick, Cheryl / Wade, Madeline / Ward, Robert L / Warner, Jim / Weaver, Betsy / Weiss, Rainer / Whittle, Chris / Willke, Benno / Wipf, Christopher C / Xiao, Liting / Yu, Hang / Yu, Haocun / Zhang, Liyuan / Zucker, Michael E / Zweizig, John

    Applied optics

    2021  Volume 60, Issue 13, Page(s) 4047–4063

    Abstract: Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce ... ...

    Abstract Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power buildup in second generation gravitational wave detectors (dual-recycled Fabry-Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and, hence, limit GW sensitivity, but it suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises.
    Language English
    Publishing date 2021-05-03
    Publishing country United States
    Document type Journal Article
    ISSN 1539-4522
    ISSN (online) 1539-4522
    DOI 10.1364/AO.419689
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top