LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 4 of total 4

Search options

  1. Article ; Online: Heavy Metal Transport in Different Drip-Irrigated Soil Types with Potato Crop

    Tarek Selim / Samah M. Elkefafy / Ronny Berndtsson / Mohamed Elkiki / Ahmed A. El-kharbotly

    Sustainability, Vol 15, Iss 10542, p

    2023  Volume 10542

    Abstract: Heavy metal (HM)-polluted soil is a serious concern, especially as brackish water is widely used for irrigation purposes in water-scarce countries. In this study, the HYDRUS-2D model was used to simulate HM (copper (Cu), lead (Pb), and zinc (Zn)) ... ...

    Abstract Heavy metal (HM)-polluted soil is a serious concern, especially as brackish water is widely used for irrigation purposes in water-scarce countries. In this study, the HYDRUS-2D model was used to simulate HM (copper (Cu), lead (Pb), and zinc (Zn)) transport through agricultural land cultivated with potato crops under surface drip irrigation to explore the potential groundwater contamination risk. Three soil types, namely, silty clay loam, sandy loam, and sandy soil, and two irrigation schemes, irrigation every two days (scheme A) and irrigation every four days (scheme B), were considered during the simulations. Firstly, the ability of HYDRUS-2D to simulate water flow was validated using data obtained from a full growing season of the potato crop in a lysimeter irrigated by surface drip irrigation using El-Salam Canal water, Egypt (i.e., water contaminated by HMs). Secondly, the model was calibrated for solute transport parameters. After that, the investigated simulation scenarios were executed. The results showed that HYDRUS-2D effectively simulated water flow. Moreover, a good agreement between the simulations and experimental results of HM concentrations under the calibrated solute parameters was obtained with R 2 values of 0.99, 0.91, and 0.71 for Cu, Pb, and Zn concentrations, respectively. HM distribution is considerably influenced by the HMs’ adsorption isotherm. The results of the investigated scenarios reveal that soil texture has a greater impact on HM concentrations in the simulation domain and on the contamination risk of the groundwater than the irrigation scheme. Under both irrigation schemes, lower HM concentrations were observed in sand, while higher values were observed in silty clay loam. Subsequently, the potential shallow groundwater contamination risk is greater when cultivating potatoes in sand, as higher HM concentrations were found in drainage water compared to the two other investigated soils, regardless of the irrigation scheme. The cumulative Cu, Pb, and Zn concentrations in drainage ...
    Keywords HYDRUS-2D ; heavy metals ; adsorption isotherm ; irrigation scheme ; groundwater contamination risk ; Environmental effects of industries and plants ; TD194-195 ; Renewable energy sources ; TJ807-830 ; Environmental sciences ; GE1-350
    Subject code 571
    Language English
    Publishing date 2023-07-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Field experiment and numerical simulation of point source irrigation with multiple tracers.

    Tarek Selim / Fethi Bouksila / Yasser Hamed / Ronny Berndtsson / Akissa Bahri / Magnus Persson

    PLoS ONE, Vol 13, Iss 1, p e

    2018  Volume 0190500

    Abstract: Dyes like Brilliant Blue have similar adsorptive behaviour as some organic contaminants, e.g., pesticides. Bromide ions, on the other hand, move much like NO3-N (fertilizer) in soil. Consequently, by using these two tracers, it is possible to in a ... ...

    Abstract Dyes like Brilliant Blue have similar adsorptive behaviour as some organic contaminants, e.g., pesticides. Bromide ions, on the other hand, move much like NO3-N (fertilizer) in soil. Consequently, by using these two tracers, it is possible to in a general way mimic how organic contaminants and fertilizers may move through soils. Three plots with sandy soil in semiarid Tunisia were irrigated during three successive hours using a single irrigation dripper and high-saline solution (10.50 dS m-1) containing dye and bromide. Fifteen hours after cease of infiltration, horizontal 5 cm trenches were dug in the soil and dye pattern, bromide concentration, and soil water content were recorded. Preferential flow occurred to some degree, however, it did not dominate the solute transport process. Therefore, drip irrigation can be recommended to improve plant culture for a better water and soil nutrient adsorption. Numerical simulation using HYDRUS-2D/3D was performed to replicate the field experiments. Observed soil water contents before and after infiltration were used to run an inverse parameter estimation procedure to identify soil hydraulic parameters. It was found that for both field experiments and numerical simulations the mobility of bromide is different from the mobility of dye. The dye was retarded approximately twice by volume as compared to bromide. The simulation results support the use of HYDRUS-2D/3D as a rapid and labor saving tool for investigating tracers' mobility in sandy soil under point source irrigation.
    Keywords Medicine ; R ; Science ; Q
    Subject code 550
    Language English
    Publishing date 2018-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Predictors of myocardial injury in patients with cirrhosis presenting with upper gastrointestinal bleeding

    Rehab Shaheen / Tarek Gouda / Monir Bahgat / Tarek Selim / Hazem Hakim El-Beltagy El-Menshawy / Elsayed Awad

    The Egyptian Journal of Internal Medicine, Vol 31, Iss 4, Pp 508-

    2019  Volume 513

    Abstract: Background Myocardial injury in conditions other than coronary artery disease (CAD), known as type 2 myocardial infarction, is mostly related to mismatch between myocardial oxygen supply and demand. Cirrhotic patients with acute upper gastrointestinal ... ...

    Abstract Background Myocardial injury in conditions other than coronary artery disease (CAD), known as type 2 myocardial infarction, is mostly related to mismatch between myocardial oxygen supply and demand. Cirrhotic patients with acute upper gastrointestinal bleeding (UGIB) are usually hemodynamically unstable. Hypovolemia, hypotension, and decreased oxygen-carrying capacity as consequences of UGIB may precipitate subclinical heart failure and myocardial injury. Aim of work Assessment of the prevalence and potential risk factors of myocardial injury in patients with liver cirrhosis with acute UGIB. Patients and methods The study was conducted on 132 patients diagnosed with liver cirrhosis presenting by UGIT bleeding at Mansoura University Hospitals during one year. Patients were divided into 2 groups: group 1 (76 patients) with myocardial injury or ischemic heart disease and group 2 (60 patients) without. Results The incidence of myocardial injury in this study (elevated troponin levels above cutoff value and/or ECG changes) was 55% of patients. Troponin I was positive in 25% of patients. ECG ischemic changes were found in 36.3% of patients in the form of ST-segment deviation or T-wave inversion. On univariate analysis, predictors of myocardial injury in patients with UGIB included MELD score and variceal source of GI bleeding. On multivariate analysis variceal source of GI bleeding is an independent predictor of myocardial injury. Variceal bleeding was found in 95 % of the ischemic group versus 63% in the other group. Conclusion More than half of the study patients presented with UGIB have suffered from unnoticed subclinical myocardial injury. Variceal source of GI bleeding was found to be an independent predictor of myocardial injury.
    Keywords gi bleeding ; liver cirrhosis ; myocardial injury ; Internal medicine ; RC31-1245
    Subject code 610
    Language English
    Publishing date 2019-01-01T00:00:00Z
    Publisher SpringerOpen
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article: Numerical evaluation of subsurface trickle irrigation with brackish water

    Abou Lila, Tarek Selim / Berndtsson, Ronny / Persson, Magnus / Somaida, Mohamed / El-Kiki, Mohamed / Hamed, Yasser / Mirdan, Ahmed

    Irrigation science. 2013 Sept., v. 31, no. 5

    2013  

    Abstract: In this study, an assessment for a proposed irrigation system in the El-Salam Canal cultivated land, Egypt, was conducted. A numerical model (HYDRUS-2D/3D) was applied to investigate the effect of irrigation amount, frequency, and emitter depth on the ... ...

    Abstract In this study, an assessment for a proposed irrigation system in the El-Salam Canal cultivated land, Egypt, was conducted. A numerical model (HYDRUS-2D/3D) was applied to investigate the effect of irrigation amount, frequency, and emitter depth on the wetted soil volume, soil salinity levels, and deep percolation under subsurface trickle irrigation (SDI) of tomato growing with brackish irrigation water in three different soil types. The simulations indicated that lower irrigation frequency increased the wetted soil volume without significant increase in water percolates below the plant roots. Deep percolation decreased as the amount of irrigation water and emitter depth decreased. With the same amount of irrigation water, the volume of leached soil was larger at lower irrigation frequency. The salinity of irrigation water under SDI with shallow emitter depth did not show any significant effect on increasing the soil salinity above tomato crop salt tolerance. Based on the results, it appears that the use of SDI with brackish irrigation water is an effective method for growing tomato crop in El-Salam Canal cultivated land especially with shallow emitter depth.
    Keywords brackish water ; crops ; irrigation rates ; irrigation scheduling ; irrigation water ; mathematical models ; roots ; salt tolerance ; soil depth ; soil salinity ; soil types ; subsurface irrigation ; tomatoes ; water salinity ; Egypt
    Language English
    Dates of publication 2013-09
    Size p. 1125-1137.
    Publishing place Springer-Verlag
    Document type Article
    ZDB-ID 133938-2
    ISSN 1432-1319 ; 0342-7188
    ISSN (online) 1432-1319
    ISSN 0342-7188
    DOI 10.1007/s00271-012-0393-6
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

To top