LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article: Finite Boundary Conditions Due to the Bar Presence in the Model of Chloride Penetration.

    Tavares, Fabiano / Andrade, Carmen

    Materials (Basel, Switzerland)

    2022  Volume 15, Issue 4

    Abstract: The chloride penetration is usually modelled through the application of a solution of Fick's second law of diffusion, based on the assumption of semi-infinite boundary conditions. However, the presence of the bars, on whose surface the chlorides ... ...

    Abstract The chloride penetration is usually modelled through the application of a solution of Fick's second law of diffusion, based on the assumption of semi-infinite boundary conditions. However, the presence of the bars, on whose surface the chlorides accumulate, makes this assumption incorrect. As the time progresses, the chlorides in the steel/concrete interface increase in concentration more than the chlorides overpassing the bar position without obstacles. This circumstance, although previously studied, has not been introduced in common practice, in spite of it supposes early reaching of the chloride threshold. The study in this paper shows a deterministic analysis of the chloride diffusion process by the finite element method (FEM) which numerically solves Fick's second law, taking into account the accumulation of the chlorides on the bar surface. Several examples are calculated and factors between the finite/semi-infinite solutions are given. These factors depend on the cover depth and the diffusion coefficient, and with less importance, on the diameter of the bar, which make it unfeasible to propose a general trend.
    Language English
    Publishing date 2022-02-15
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2487261-1
    ISSN 1996-1944
    ISSN 1996-1944
    DOI 10.3390/ma15041426
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article: Improvement of the Concrete Permeability by Using Hydrophilic Blended Additive.

    García Calvo, José Luis / Sánchez Moreno, Mercedes / Carballosa, Pedro / Pedrosa, Filipe / Tavares, Fabiano

    Materials (Basel, Switzerland)

    2019  Volume 12, Issue 15

    Abstract: Crystalline hydrophilic additives are increasingly used as efficient methods for reducing water permeability in concrete. Their effectiveness in hindering water penetration has been proven in different cementitious materials, although scarce information ... ...

    Abstract Crystalline hydrophilic additives are increasingly used as efficient methods for reducing water permeability in concrete. Their effectiveness in hindering water penetration has been proven in different cementitious materials, although scarce information has been reported concerning their action mechanism. In the present work, the efficacy of a hydrophilic blended crystalline mix (Krystaline Add1) as a water-reducing additive has been confirmed. Furthermore, an extended study about how the presence of the additive influences both the fresh state and the hardened state properties is presented. Finally, characterization techniques such as Mercury Intrusion Porosimetry (MIP), X-ray Powder Diffraction (XRD) and Back-Scattered Scanning Electron Microscopy (BSEM) with Energy Dispersive X-ray analysis (EDAX) have been used for deducing the mechanism of the additive. No significant deleterious influence on the concrete properties due to the addition of the additive has been detected. In fact, the additive seems to have provided a positive influence on the concrete given that a slight reduction in the w/c ratio for similar consistency has been detected, with the subsequent improvement of the compressive strength values. Its effectiveness as a water permeability reducing additive has shown encouraging results having reduced the water permeability by approximately 50% during testing. The action mechanism of the studied additive seems to be related to hydration reactions in the presence of water, producing new solid amorphous phases in the concrete bulk.
    Language English
    Publishing date 2019-07-26
    Publishing country Switzerland
    Document type Journal Article
    ZDB-ID 2487261-1
    ISSN 1996-1944
    ISSN 1996-1944
    DOI 10.3390/ma12152384
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top