LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: Intrathoracic extramedullary hematopoiesis.

    Teng, Zhang-Yu / Pu, Jiang-Tao

    The American journal of the medical sciences

    2023  Volume 366, Issue 1, Page(s) e6

    MeSH term(s) Humans ; Hematopoiesis, Extramedullary ; Mediastinal Neoplasms ; Hematologic Diseases
    Language English
    Publishing date 2023-02-22
    Publishing country United States
    Document type Letter
    ZDB-ID 82078-7
    ISSN 1538-2990 ; 0002-9629
    ISSN (online) 1538-2990
    ISSN 0002-9629
    DOI 10.1016/j.amjms.2023.02.010
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: Xiphoid process syndrome.

    Teng, Zhang-Yu / Yang, Wen-Xing / Pu, Jiang-Tao

    The American journal of the medical sciences

    2023  Volume 367, Issue 2, Page(s) e22

    MeSH term(s) Humans ; Xiphoid Bone ; Bone Diseases ; Tomography, X-Ray Computed ; Syndrome
    Language English
    Publishing date 2023-09-16
    Publishing country United States
    Document type Letter
    ZDB-ID 82078-7
    ISSN 1538-2990 ; 0002-9629
    ISSN (online) 1538-2990
    ISSN 0002-9629
    DOI 10.1016/j.amjms.2023.09.019
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  3. Article ; Online: Transient receptor potential vanilloid 4 promotes the growth of non-small cell lung cancer by regulating Foxp3.

    Pu, Jiang-Tao / Zhang, Tao / He, Kai-Ming / Zhang, Deng-Guo / Teng, Zhang-Yu / Wu, Yun-Fei

    Acta biochimica Polonica

    2022  Volume 69, Issue 1, Page(s) 51–57

    Abstract: Objective(s): Transient receptor potential vanilloid 4 (TRPV4) participates in malignant tumor. However, the role of TRPV4 in non-small cell lung cancer (NSCLC) remains unclear. In this study, we demonstrated TRPV4 was upregulated in NSCLC tissues and ... ...

    Abstract Objective(s): Transient receptor potential vanilloid 4 (TRPV4) participates in malignant tumor. However, the role of TRPV4 in non-small cell lung cancer (NSCLC) remains unclear. In this study, we demonstrated TRPV4 was upregulated in NSCLC tissues and NSCLC cell lines.
    Materials and methods: TRPV4 level in the NSCLC patients and cell lines were detected, and its function was studied both in vivo and vitro.
    Results: The level of TRPV4 showed a positive correlation with tumor size of NSCLC patients. Activation TRPV4 by agonist GSK1016790A promoted cell proliferation and decreased apoptosis in A549 cells, and these effects were enhanced when the cells have overexpressed TRPV4. Moreover, GSK1016790A induced inhibitory effects on apoptosis of A549 cells was impaired when GSK1016790A used together with TRPV4 selective antagonist HC-067047, or impaired when the cells have already downregulated TRPV4 expression by TRPV4 siRNA. In vivo study, pharmacological inhibition of TRPV4 prevented A549 cells transplanted tumor growth. It was showed Foxp3 level was significantly increased in the NSCLC tissues, and showed a positive correlation with the level of TRPV4. Deactivation of TRPV4 using TRPV4 siRNA or HC-067047 significantly reduced expression of Foxp3 in GSK1016790A treated NSCLC cells. Moreover, downregulation Foxp3 by transfection of Foxp3 siRNA significantly impaired TRPV4 induced NSCLC cells proliferations in vitro.
    Conclusions: Antitumor effects caused by TRPV4 inhibition in NSCLC might be attributed to the suppression of Foxp3 which induced subsequent cell apoptosis. Thus, pharmacological inhibition of TRPV4 may be a promising option for NSCLC treatment.
    MeSH term(s) A549 Cells ; Aged ; Apoptosis/drug effects ; Biomarkers, Tumor/metabolism ; Carcinoma, Non-Small-Cell Lung/metabolism ; Cell Proliferation/drug effects ; Female ; Forkhead Transcription Factors/metabolism ; Humans ; Leucine/analogs & derivatives ; Leucine/pharmacology ; Lung Neoplasms/metabolism ; Male ; Middle Aged ; Morpholines/pharmacology ; Pyrroles/pharmacology ; Sulfonamides/pharmacology ; TRPV Cation Channels/metabolism
    Chemical Substances Biomarkers, Tumor ; FOXP3 protein, human ; Forkhead Transcription Factors ; HC-067047 ; Morpholines ; N-(1-((4-(2-(((2,4-dichlorophenyl)sulfonyl)amino)-3-hydroxypropanoyl)-1-piperazinyl)carbonyl)-3-methylbutyl)-1-benzothiophene-2-carboxamide ; Pyrroles ; Sulfonamides ; TRPV Cation Channels ; TRPV4 protein, human ; Leucine (GMW67QNF9C)
    Language English
    Publishing date 2022-01-20
    Publishing country Poland
    Document type Journal Article
    ZDB-ID 595762-x
    ISSN 1734-154X ; 0001-527X
    ISSN (online) 1734-154X
    ISSN 0001-527X
    DOI 10.18388/abp.2020_5614
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top