LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 12

Search options

  1. Article ; Online: Utilizing genetic code expansion to modify N-TIMP2 specificity towards MMP-2, MMP-9, and MMP-14

    Hezi Hayun / Matt Coban / Ashok Kumar Bhagat / Eden Ozer / Lital Alfonta / Thomas R. Caulfield / Evette S. Radisky / Niv Papo

    Scientific Reports, Vol 13, Iss 1, Pp 1-

    2023  Volume 14

    Abstract: Abstract Matrix metalloproteinases (MMPs) regulate the degradation of extracellular matrix (ECM) components in biological processes. MMP activity is controlled by natural tissue inhibitors of metalloproteinases (TIMPs) that non-selectively inhibit the ... ...

    Abstract Abstract Matrix metalloproteinases (MMPs) regulate the degradation of extracellular matrix (ECM) components in biological processes. MMP activity is controlled by natural tissue inhibitors of metalloproteinases (TIMPs) that non-selectively inhibit the function of multiple MMPs via interaction with the MMPs' Zn2+-containing catalytic pocket. Recent studies suggest that TIMPs engineered to confer MMP specificity could be exploited for therapeutic purposes, but obtaining specific TIMP-2 inhibitors has proved to be challenging. Here, in an effort to improve MMP specificity, we incorporated the metal-binding non-canonical amino acids (NCAAs), 3,4-dihydroxyphenylalanine (L-DOPA) and (8-hydroxyquinolin-3-yl)alanine (HqAla), into the MMP-inhibitory N-terminal domain of TIMP2 (N-TIMP2) at selected positions that interact with the catalytic Zn2+ ion (S2, S69, A70, L100) or with a structural Ca2+ ion (Y36). Evaluation of the inhibitory potency of the NCAA-containing variants towards MMP-2, MMP-9 and MMP-14 in vitro revealed that most showed a significant loss of inhibitory activity towards MMP-14, but not towards MMP-2 and MMP-9, resulting in increased specificity towards the latter proteases. Substitutions at S69 conferred the best improvement in selectivity for both L-DOPA and HqAla variants. Molecular modeling provided an indication of how MMP-2 and MMP-9 are better able to accommodate the bulky NCAA substituents at the intermolecular interface with N-TIMP2. The models also showed that, rather than coordinating to Zn2+, the NCAA side chains formed stabilizing polar interactions at the intermolecular interface with MMP-2 and MMP-9. Our findings illustrate how incorporation of NCAAs can be used to probe—and possibly exploit—differential tolerance for substitution within closely related protein–protein complexes as a means to improve specificity.
    Keywords Medicine ; R ; Science ; Q
    Subject code 540
    Language English
    Publishing date 2023-03-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Unveiling an indole alkaloid diketopiperazine biosynthetic pathway that features a unique stereoisomerase and multifunctional methyltransferase

    Garrett Deletti / Sajan D. Green / Caleb Weber / Kristen N. Patterson / Swapnil S. Joshi / Tushar M. Khopade / Mathew Coban / James Veek-Wilson / Thomas R. Caulfield / Rajesh Viswanathan / Amy L. Lane

    Nature Communications, Vol 14, Iss 1, Pp 1-

    2023  Volume 13

    Abstract: Abstract The 2,5-diketopiperazines are a prominent class of bioactive molecules. The nocardioazines are actinomycete natural products that feature a pyrroloindoline diketopiperazine scaffold composed of two D-tryptophan residues functionalized by N- and ... ...

    Abstract Abstract The 2,5-diketopiperazines are a prominent class of bioactive molecules. The nocardioazines are actinomycete natural products that feature a pyrroloindoline diketopiperazine scaffold composed of two D-tryptophan residues functionalized by N- and C-methylation, prenylation, and diannulation. Here we identify and characterize the nocardioazine B biosynthetic pathway from marine Nocardiopsis sp. CMB-M0232 by using heterologous biotransformations, in vitro biochemical assays, and macromolecular modeling. Assembly of the cyclo-L-Trp-L-Trp diketopiperazine precursor is catalyzed by a cyclodipeptide synthase. A separate genomic locus encodes tailoring of this precursor and includes an aspartate/glutamate racemase homolog as an unusual D/L isomerase acting upon diketopiperazine substrates, a phytoene synthase-like prenyltransferase as the catalyst of indole alkaloid diketopiperazine prenylation, and a rare dual function methyltransferase as the catalyst of both N- and C-methylation as the final steps of nocardioazine B biosynthesis. The biosynthetic paradigms revealed herein showcase Nature’s molecular ingenuity and lay the foundation for diketopiperazine diversification via biocatalytic approaches.
    Keywords Science ; Q
    Language English
    Publishing date 2023-05-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: FAM111A protects replication forks from protein obstacles via its trypsin-like domain

    Yusuke Kojima / Yuka Machida / Sowmiya Palani / Thomas R. Caulfield / Evette S. Radisky / Scott H. Kaufmann / Yuichi J. Machida

    Nature Communications, Vol 11, Iss 1, Pp 1-

    2020  Volume 14

    Abstract: DNA-protein crosslinks represent obstacles on genomic DNA that can hamper progression of replication forks. Here, the authors reveal that FAM111A, a PCNA-interacting protein, plays part in mitigating the effect of protein obstacles on replication forks. ...

    Abstract DNA-protein crosslinks represent obstacles on genomic DNA that can hamper progression of replication forks. Here, the authors reveal that FAM111A, a PCNA-interacting protein, plays part in mitigating the effect of protein obstacles on replication forks.
    Keywords Science ; Q
    Language English
    Publishing date 2020-03-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: FAM111A protects replication forks from protein obstacles via its trypsin-like domain

    Yusuke Kojima / Yuka Machida / Sowmiya Palani / Thomas R. Caulfield / Evette S. Radisky / Scott H. Kaufmann / Yuichi J. Machida

    Nature Communications, Vol 11, Iss 1, Pp 1-

    2020  Volume 14

    Abstract: DNA-protein crosslinks represent obstacles on genomic DNA that can hamper progression of replication forks. Here, the authors reveal that FAM111A, a PCNA-interacting protein, plays part in mitigating the effect of protein obstacles on replication forks. ...

    Abstract DNA-protein crosslinks represent obstacles on genomic DNA that can hamper progression of replication forks. Here, the authors reveal that FAM111A, a PCNA-interacting protein, plays part in mitigating the effect of protein obstacles on replication forks.
    Keywords Science ; Q
    Language English
    Publishing date 2020-03-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Examination of Molecular Effects of MYLK Deletion in a Patient with Extensive Aortic, Carotid, and Abdominal Dissections That Underlie the Genetic Dysfunction

    Sarah K. Macklin / Katelyn A. Bruno / Charitha Vadlamudi / Haytham Helmi / Ayesha Samreen / Ahmed N. Mohammad / Stepahnie Hines / Paldeep S. Atwal / Thomas R. Caulfield

    Case Reports in Medicine, Vol

    2020  Volume 2020

    Abstract: We describe the phenotype of a patient with extensive aortic, carotid, and abdominal dissections. The proband was found to have a heterozygous deletion of exons 21–34 in MYLK, which is a rare finding, as deletions in this gene have been infrequently ... ...

    Abstract We describe the phenotype of a patient with extensive aortic, carotid, and abdominal dissections. The proband was found to have a heterozygous deletion of exons 21–34 in MYLK, which is a rare finding, as deletions in this gene have been infrequently reported. We describe this finding following detection in a proband with an extensive history of aortic, carotid, and abdominal dissections. Neoteric molecular modeling techniques to help determine the impact of this deletion on protein function indicated loss of function due to lack of any kinase domain. We also provide the electrostatics calculations from the wild type and mutant variant. Through a combined multiomic approach of clinical, functional, and protein informatics, we arrive at a data fusion for determination of pathogenicity embedded within the genetic code for this particular genetic variant, which, as a platform, continues to broaden its scope across the field of variants of uncertain significance classification.
    Keywords Medicine ; R
    Subject code 572
    Language English
    Publishing date 2020-01-01T00:00:00Z
    Publisher Hindawi Limited
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Examinations of tRNA Range of Motion Using Simulations of Cryo-EM Microscopy and X-Ray Data

    Thomas R. Caulfield / Batsal Devkota / Geoffrey C. Rollins

    Journal of Biophysics, Vol

    2011  Volume 2011

    Abstract: We examined tRNA flexibility using a combination of steered and unbiased molecular dynamics simulations. Using Maxwell's demon algorithm, molecular dynamics was used to steer X-ray structure data toward that from an alternative state obtained from ... ...

    Abstract We examined tRNA flexibility using a combination of steered and unbiased molecular dynamics simulations. Using Maxwell's demon algorithm, molecular dynamics was used to steer X-ray structure data toward that from an alternative state obtained from cryogenic-electron microscopy density maps. Thus, we were able to fit X-ray structures of tRNA onto cryogenic-electron microscopy density maps for hybrid states of tRNA. Additionally, we employed both Maxwell's demon molecular dynamics simulations and unbiased simulation methods to identify possible ribosome-tRNA contact areas where the ribosome may discriminate tRNAs during translation. Herein, we collected >500 ns of simulation data to assess the global range of motion for tRNAs. Biased simulations can be used to steer between known conformational stop points, while unbiased simulations allow for a general testing of conformational space previously unexplored. The unbiased molecular dynamics data describes the global conformational changes of tRNA on a sub-microsecond time scale for comparison with steered data. Additionally, the unbiased molecular dynamics data was used to identify putative contacts between tRNA and the ribosome during the accommodation step of translation. We found that the primary contact regions were H71 and H92 of the 50S subunit and ribosomal proteins L14 and L16.
    Keywords Biology (General) ; QH301-705.5
    Subject code 541
    Language English
    Publishing date 2011-01-01T00:00:00Z
    Publisher Hindawi Publishing Corporation
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Small molecule inhibitors of mesotrypsin from a structure-based docking screen.

    Olumide Kayode / Zunnan Huang / Alexei S Soares / Thomas R Caulfield / Zigang Dong / Ann M Bode / Evette S Radisky

    PLoS ONE, Vol 12, Iss 5, p e

    2017  Volume 0176694

    Abstract: PRSS3/mesotrypsin is an atypical isoform of trypsin, the upregulation of which has been implicated in promoting tumor progression. To date there are no mesotrypsin-selective pharmacological inhibitors which could serve as tools for deciphering the ... ...

    Abstract PRSS3/mesotrypsin is an atypical isoform of trypsin, the upregulation of which has been implicated in promoting tumor progression. To date there are no mesotrypsin-selective pharmacological inhibitors which could serve as tools for deciphering the pathological role of this enzyme, and could potentially form the basis for novel therapeutic strategies targeting mesotrypsin. A virtual screen of the Natural Product Database (NPD) and Food and Drug Administration (FDA) approved Drug Database was conducted by high-throughput molecular docking utilizing crystal structures of mesotrypsin. Twelve high-scoring compounds were selected for testing based on lowest free energy docking scores, interaction with key mesotrypsin active site residues, and commercial availability. Diminazene (CID22956468), along with two similar compounds presenting the bis-benzamidine substructure, was validated as a competitive inhibitor of mesotrypsin and other human trypsin isoforms. Diminazene is the most potent small molecule inhibitor of mesotrypsin reported to date with an inhibitory constant (Ki) of 3.6±0.3 μM. Diminazene was subsequently co-crystalized with mesotrypsin and the crystal structure was solved and refined to 1.25 Å resolution. This high resolution crystal structure can now offer a foundation for structure-guided efforts to develop novel and potentially more selective mesotrypsin inhibitors based on similar molecular substructures.
    Keywords Medicine ; R ; Science ; Q
    Subject code 540
    Language English
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Small molecule inhibitors of mesotrypsin from a structure-based docking screen.

    Olumide Kayode / Zunnan Huang / Alexei S Soares / Thomas R Caulfield / Zigang Dong / Ann M Bode / Evette S Radisky

    PLoS ONE, Vol 12, Iss 5, p e

    2017  Volume 0176694

    Abstract: PRSS3/mesotrypsin is an atypical isoform of trypsin, the upregulation of which has been implicated in promoting tumor progression. To date there are no mesotrypsin-selective pharmacological inhibitors which could serve as tools for deciphering the ... ...

    Abstract PRSS3/mesotrypsin is an atypical isoform of trypsin, the upregulation of which has been implicated in promoting tumor progression. To date there are no mesotrypsin-selective pharmacological inhibitors which could serve as tools for deciphering the pathological role of this enzyme, and could potentially form the basis for novel therapeutic strategies targeting mesotrypsin. A virtual screen of the Natural Product Database (NPD) and Food and Drug Administration (FDA) approved Drug Database was conducted by high-throughput molecular docking utilizing crystal structures of mesotrypsin. Twelve high-scoring compounds were selected for testing based on lowest free energy docking scores, interaction with key mesotrypsin active site residues, and commercial availability. Diminazene (CID22956468), along with two similar compounds presenting the bis-benzamidine substructure, was validated as a competitive inhibitor of mesotrypsin and other human trypsin isoforms. Diminazene is the most potent small molecule inhibitor of mesotrypsin reported to date with an inhibitory constant (Ki) of 3.6±0.3 μM. Diminazene was subsequently co-crystalized with mesotrypsin and the crystal structure was solved and refined to 1.25 Å resolution. This high resolution crystal structure can now offer a foundation for structure-guided efforts to develop novel and potentially more selective mesotrypsin inhibitors based on similar molecular substructures.
    Keywords Medicine ; R ; Science ; Q
    Subject code 540
    Language English
    Publishing date 2017-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Genomic Observations of a Rare/Pathogenic SMAD3 Variant in Loeys–Dietz Syndrome 3 Confirmed by Protein Informatics and Structural Investigations

    John E. Richter / Ayesha Samreen / Charitha Vadlamudi / Haytham Helmi / Ahmed N. Mohammad / Klaas Wierenga / Stephanie Hines / Paldeep S. Atwal / Thomas R. Caulfield

    Medicina, Vol 55, Iss 5, p

    2019  Volume 137

    Abstract: Background and objectives: Loeys–Dietz syndrome 3, also known as aneurysms-–osteoarthritis syndrome, is an autosomal dominant genetic connective tissue disease caused by pathogenic variants in SMAD3 , a transcription factor involved in TGF-β signaling. ... ...

    Abstract Background and objectives: Loeys–Dietz syndrome 3, also known as aneurysms-–osteoarthritis syndrome, is an autosomal dominant genetic connective tissue disease caused by pathogenic variants in SMAD3 , a transcription factor involved in TGF-β signaling. This disorder is characterized by early-onset osteoarthritis and arterial aneurysms. Common features include scoliosis, uvula abnormalities, striae, and velvety skin. Materials and Methods : The pathogenicity of a variant of uncertain significance in the SMAD3 gene was evaluated (variant c.220C > T) through personalized protein informatics and molecular studies. Results: The case of a 44-year-old male, who was originally presumed to have Marfan syndrome, is presented. An expanded gene panel determined the probable cause to be a variant in SMAD3 , c.220C > T (p.R74W). His case was complicated by a history of stroke, but his phenotype was otherwise characteristic for Loeys–Dietz syndrome 3. Conclusion: This case emphasizes the importance of comprehensive genetic testing to evaluate patients for connective tissue disorders, as well as the potential benefit of utilizing a protein informatics platform for the assessment of variant pathogenicity.
    Keywords SMA- and MAD-related protein 3 (SMAD3) ; Loeys–Dietz syndrome 3 (LDS3) ; protein informatics ; molecular genomics ; pathogenicity ; case report ; Medicine (General) ; R5-920
    Subject code 616
    Language English
    Publishing date 2019-05-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin.

    Thomas R Caulfield / Fabienne C Fiesel / Elisabeth L Moussaud-Lamodière / Daniel F A R Dourado / Samuel C Flores / Wolfdieter Springer

    PLoS Computational Biology, Vol 10, Iss 11, p e

    2014  Volume 1003935

    Abstract: Loss-of-function mutations in PINK1 or PARKIN are the most common causes of autosomal recessive Parkinson's disease. Both gene products, the Ser/Thr kinase PINK1 and the E3 Ubiquitin ligase Parkin, functionally cooperate in a mitochondrial quality ... ...

    Abstract Loss-of-function mutations in PINK1 or PARKIN are the most common causes of autosomal recessive Parkinson's disease. Both gene products, the Ser/Thr kinase PINK1 and the E3 Ubiquitin ligase Parkin, functionally cooperate in a mitochondrial quality control pathway. Upon stress, PINK1 activates Parkin and enables its translocation to and ubiquitination of damaged mitochondria to facilitate their clearance from the cell. Though PINK1-dependent phosphorylation of Ser65 is an important initial step, the molecular mechanisms underlying the activation of Parkin's enzymatic functions remain unclear. Using molecular modeling, we generated a complete structural model of human Parkin at all atom resolution. At steady state, the Ub ligase is maintained inactive in a closed, auto-inhibited conformation that results from intra-molecular interactions. Evidently, Parkin has to undergo major structural rearrangements in order to unleash its catalytic activity. As a spark, we have modeled PINK1-dependent Ser65 phosphorylation in silico and provide the first molecular dynamics simulation of Parkin conformations along a sequential unfolding pathway that could release its intertwined domains and enable its catalytic activity. We combined free (unbiased) molecular dynamics simulation, Monte Carlo algorithms, and minimal-biasing methods with cell-based high content imaging and biochemical assays. Phosphorylation of Ser65 results in widening of a newly defined cleft and dissociation of the regulatory N-terminal UBL domain. This motion propagates through further opening conformations that allow binding of an Ub-loaded E2 co-enzyme. Subsequent spatial reorientation of the catalytic centers of both enzymes might facilitate the transfer of the Ub moiety to charge Parkin. Our structure-function study provides the basis to elucidate regulatory mechanisms and activity of the neuroprotective Parkin. This may open up new avenues for the development of small molecule Parkin activators through targeted drug design.
    Keywords Biology (General) ; QH301-705.5
    Subject code 500
    Language English
    Publishing date 2014-11-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top