LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Article ; Online: Activation of Notch3 in Renal Tubular Cells Leads to Progressive Cystic Kidney Disease

    Sonja Djudjaj / Panagiotis Kavvadas / Niki Prakoura / Roman D. Bülow / Tiffany Migeon / Sandrine Placier / Christos E. Chadjichristos / Peter Boor / Christos Chatziantoniou

    International Journal of Molecular Sciences, Vol 23, Iss 884, p

    2022  Volume 884

    Abstract: Background: Polycystic kidney disease (PKD) is a genetic disorder affecting millions of people worldwide that is characterized by fluid-filled cysts and leads to end-stage renal disease (ESRD). The hallmarks of PKD are proliferation and dedifferentiation ...

    Abstract Background: Polycystic kidney disease (PKD) is a genetic disorder affecting millions of people worldwide that is characterized by fluid-filled cysts and leads to end-stage renal disease (ESRD). The hallmarks of PKD are proliferation and dedifferentiation of tubular epithelial cells, cellular processes known to be regulated by Notch signaling. Methods: We found increased Notch3 expression in human PKD and renal cell carcinoma biopsies. To obtain insight into the underlying mechanisms and the functional consequences of this abnormal expression, we developed a transgenic mouse model with conditional overexpression of the intracellular Notch3 (ICN3) domain specifically in renal tubules. We evaluated the alterations in renal function (creatininemia, BUN) and structure (cysts, fibrosis, inflammation) and measured the expression of several genes involved in Notch signaling and the mechanisms of inflammation, proliferation, dedifferentiation, fibrosis, injury, apoptosis and regeneration. Results: After one month of ICN3 overexpression, kidneys were larger with tubules grossly enlarged in diameter, with cell hypertrophy and hyperplasia, exclusively in the outer stripe of the outer medulla. After three months, mice developed numerous cysts in proximal and distal tubules. The cysts had variable sizes and were lined with a single- or multilayered, flattened, cuboid or columnar epithelium. This resulted in epithelial hyperplasia, which was observed as protrusions into the cystic lumen in some of the renal cysts. The pre-cystic and cystic epithelium showed increased expression of cytoskeletal filaments and markers of epithelial injury and dedifferentiation. Additionally, the epithelium showed increased proliferation with an aberrant orientation of the mitotic spindle. These phenotypic tubular alterations led to progressive interstitial inflammation and fibrosis. Conclusions: In summary, Notch3 signaling promoted tubular cell proliferation, the alignment of cell division, dedifferentiation and hyperplasia, leading to cystic ...
    Keywords Notch3 ; polycystic kidney disease ; renal cell carcinoma ; renal fibrosis ; chronic kidney disease ; renal inflammation ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 616
    Language English
    Publishing date 2022-01-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Pulmonary hypertension without heart failure causes cardiorenal syndrome in a porcine model

    Arthur Orieux / Chloé Samson / Laurence Pieroni / Sarah Drouin / Simon Dang Van / Tiffany Migeon / Perrine Frere / Dorothée Brunet / David Buob / Juliette Hadchouel / Julien Guihaire / Olaf Mercier / Pierre Galichon

    Scientific Reports, Vol 13, Iss 1, Pp 1-

    2023  Volume 10

    Abstract: Abstract Cardiorenal syndromes type 1 and 2 are complex disorders in which cardiac dysfunction leads to kidney dysfunction. However, the mechanisms remain incompletely explained, during pulmonary hypertension in particular. The objective of this study is ...

    Abstract Abstract Cardiorenal syndromes type 1 and 2 are complex disorders in which cardiac dysfunction leads to kidney dysfunction. However, the mechanisms remain incompletely explained, during pulmonary hypertension in particular. The objective of this study is to develop an original preclinical model of cardiorenal syndrome secondary to a pulmonary hypertension in piglets. Twelve 2-month-old Large White piglets were randomized in two groups: (1) induction of pulmonary hypertension by ligation of the left pulmonary artery and iterative embolizations of the right lower pulmonary artery, or (2) Sham interventions. We evaluated the cardiac function using right heart catheterization, echocardiography and measurement of biochemistry markers). Kidney was characterized using laboratory blood and urine tests, histological evaluation, immunostainings for renal damage and repair, and a longitudinal weekly assessment of the glomerular filtration rate using creatinine-based estimation and intravenous injection of an exogenous tracer on one piglet. At the end of the protocol (6 weeks), the mean pulmonary artery pressure (32 ± 10 vs. 13 ± 2 mmHg; p = 0.001), pulmonary vascular resistance (9.3 ± 4.7 vs. 2.5 ± 0.4 WU; p = 0.004) and central venous pressure were significantly higher in the pulmonary hypertension group while the cardiac index was not different. Piglets with pulmonary hypertension had higher troponin I. We found significant tubular damage and an increase in albuminuria in the pulmonary hypertension group and negative correlation between pulmonary hypertension and renal function. We report here the first porcine model of cardiorenal syndrome secondary to pulmonary hypertension.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2023-06-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Anaesthesia-Induced Transcriptomic Changes in the Context of Renal Ischemia Uncovered by the Use of a Novel Clamping Device

    Charles Verney / David Legouis / Sandrine Placier / Tiffany Migeon / Philippe Bonnin / David Buob / Juliette Hadchouel / Pierre Galichon

    International Journal of Molecular Sciences, Vol 22, Iss 9840, p

    2021  Volume 9840

    Abstract: Ischemia is a common cause of acute kidney injury worldwide, frequently occurring in patients undergoing cardiac surgery or admitted to the intensive care unit (ICU). Thus, ischemia-reperfusion injury (IRI) remains one of the main experimental models for ...

    Abstract Ischemia is a common cause of acute kidney injury worldwide, frequently occurring in patients undergoing cardiac surgery or admitted to the intensive care unit (ICU). Thus, ischemia-reperfusion injury (IRI) remains one of the main experimental models for the study of kidney diseases. However, the classical technique, based on non-traumatic surgical clamps, suffers from several limitations. It does not allow the induction of multiple episodes of acute kidney injury (AKI) in the same animal, which would be relevant from a human perspective. It also requires a deep and long sedation, raising the question of potential anaesthesia-related biases. We designed a vascular occluding device that can be activated remotely in conscious mice. We first assessed the intensity and the reproducibility of the acute kidney injury induced by this new device. We finally investigated the role played by the anaesthesia in the IRI models at the histological, functional and transcriptomic levels. We showed that this technique allows the rapid induction of renal ischemia in a repeatable and reproducible manner, breaking several classical limitations. In addition, we used its unique specificities to highlight the renal protective effect conferred by the anaesthesia, related to the mitigation of the IRI transcriptomic program.
    Keywords renal ischemia ; acute kidney injury ; anaesthesia ; animal models ; surgical clamp ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 610
    Language English
    Publishing date 2021-09-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top