LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 8 of total 8

Search options

  1. Article ; Online: Editorial

    David J. Lea-Smith / Tina C. Summerfield / Daniel C. Ducat / Xuefeng Lu / Alistair J. McCormick / Saul Purton

    Frontiers in Microbiology, Vol

    Exploring the Growing Role of Cyanobacteria in Industrial Biotechnology and Sustainability

    2021  Volume 12

    Keywords cyanobacteria ; biotechnology ; synthetic biology ; protein turnover ; chemical production ; Microbiology ; QR1-502
    Language English
    Publishing date 2021-07-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Fungal diversity in canopy soil of silver beech, Nothofagus menziesii (Nothofagaceae).

    Andy R Nilsen / Suliana E Teasdale / Paul L Guy / Tina C Summerfield / David A Orlovich

    PLoS ONE, Vol 15, Iss 1, p e

    2020  Volume 0227860

    Abstract: Adventitious roots in canopy soils associated with silver beech (Nothofagus menziesii Hook.f. (Nothofagaceae)) form ectomycorrhizal associations. We investigated the extent to which canopy ectomycorrhizal communities contribute to overall diversity of ... ...

    Abstract Adventitious roots in canopy soils associated with silver beech (Nothofagus menziesii Hook.f. (Nothofagaceae)) form ectomycorrhizal associations. We investigated the extent to which canopy ectomycorrhizal communities contribute to overall diversity of ectomycorrhizal fungi associated with silver beech. Hyphal ingrowth bags were buried for 12 months in canopy and terrestrial soils of five trees at one site. We used amplicon sequencing of the nuclear ribosomal internal transcribed spacer 2 region (ITS2) to assess diversity of both ectomycorrhizal and non-ectomycorrhizal OTUs in hyphal ingrowth bags. There was a significant difference in ectomycorrhizal fungal community diversity between the terrestrial and canopy hyphal ingrowth bag communities. Ectomycorrhizal community composition of the terrestrial and canopy environments was also significantly different. Some ectomycorrhizal taxa were significantly differentially represented in either the terrestrial or canopy environment. The hyphal ingrowth bags also accumulated non-ectomycorrhizal species. The non-ectomycorrhizal fungi also had significantly different diversity and community composition between the canopy and terrestrial environments. Like the ectomycorrhizal community, some non-ectomycorrhizal taxa were significantly differentially represented in either the terrestrial or canopy environment. The canopy soil microhabitat provides a novel environment for growth of ectomycorrhizal adventitious roots and enables the spatial partitioning of ectomycorrhizal and non-ectomycorrhizal fungal diversity in the forest.
    Keywords Medicine ; R ; Science ; Q
    Subject code 550
    Language English
    Publishing date 2020-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Feedback mechanisms stabilise degraded turf algal systems at a CO2 seep site

    Ben P. Harvey / Ro Allen / Sylvain Agostini / Linn J. Hoffmann / Koetsu Kon / Tina C. Summerfield / Shigeki Wada / Jason M. Hall-Spencer

    Communications Biology, Vol 4, Iss 1, Pp 1-

    2021  Volume 10

    Abstract: Ben Harvey et al. use the gradient provided by a natural CO2 seep off Shikine Island, Japan and lab microcosm experiments to determine how ocean acidification promotes turf algal habitat conditions that create stabilizing feedback loops and hysteresis ... ...

    Abstract Ben Harvey et al. use the gradient provided by a natural CO2 seep off Shikine Island, Japan and lab microcosm experiments to determine how ocean acidification promotes turf algal habitat conditions that create stabilizing feedback loops and hysteresis capable of locking turf systems in place. These results further our understanding of feedback loops initiated by ocean acidification, and can assist in the management of coastal habitats.
    Keywords Biology (General) ; QH301-705.5
    Language English
    Publishing date 2021-02-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Species turnover underpins the effect of elevated CO2 on biofilm communities through early succession

    Ro J. Allen / Tina C. Summerfield / Ben P. Harvey / Sylvain Agostini / Samuel P.S. Rastrick / Jason M. Hall-Spencer / Linn J. Hoffmann

    Climate Change Ecology, Vol 2, Iss , Pp 100017- (2021)

    2021  

    Abstract: Biofilms harbour a wealth of microbial diversity and fulfil key functions in coastal marine ecosystems. Elevated carbon dioxide (CO2) conditions affect the structure and function of biofilm communities, yet the ecological patterns that underpin these ... ...

    Abstract Biofilms harbour a wealth of microbial diversity and fulfil key functions in coastal marine ecosystems. Elevated carbon dioxide (CO2) conditions affect the structure and function of biofilm communities, yet the ecological patterns that underpin these effects remain unknown. We used high-throughput sequencing of the 16S and 18S rRNA genes to investigate the effect of elevated CO2 on the early successional stages of prokaryotic and eukaryotic biofilms at a CO2 seep system off Shikine Island, Japan. Elevated CO2 profoundly affected biofilm community composition throughout the early stages of succession, leading to greater compositional homogeneity between replicates and the proliferation of the potentially harmful algae Prymnesium sp. and Biddulphia biddulphiana. Species turnover was the main driver of differences between communities in reference and high CO2 conditions, rather than differences in richness or evenness. Our study indicates that species turnover is the primary ecological pattern that underpins the effect of elevated CO2 on both prokaryotic and eukaryotic components of biofilm communities, indicating that elevated CO2 conditions represent a distinct niche selecting for a distinct cohort of organisms without the loss of species richness.
    Keywords Biofilm ; Microbial ecology ; Harmful algae ; Ocean acidification ; Succession ; CO2 seeps ; Ecology ; QH540-549.5
    Subject code 580
    Language English
    Publishing date 2021-12-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Contrasting bacterial communities in two indigenous Chionochloa (Poaceae) grassland soils in New Zealand.

    Jocelyn C Griffith / William G Lee / David A Orlovich / Tina C Summerfield

    PLoS ONE, Vol 12, Iss 6, p e

    2017  Volume 0179652

    Abstract: The cultivation of grasslands can modify both bacterial community structure and impact on nutrient cycling as well as the productivity and diversity of plant communities. In this study, two pristine New Zealand grassland sites dominated by indigenous ... ...

    Abstract The cultivation of grasslands can modify both bacterial community structure and impact on nutrient cycling as well as the productivity and diversity of plant communities. In this study, two pristine New Zealand grassland sites dominated by indigenous tall tussocks (Chionochloa pallens or C. teretifolia) were examined to investigate the extent and predictability of variation of the bacterial community. The contribution of free-living bacteria to biological nitrogen fixation is predicted to be ecologically significant in these soils; therefore, the diazotrophic community was also examined. The C. teretifolia site had N-poor and poorly-drained peaty soils, and the C. pallens had N-rich and well-drained fertile soils. These soils also differ in the proportion of organic carbon (C), Olsen phosphorus (P) and soil pH. The nutrient-rich soils showed increased relative abundances of some copiotrophic bacterial taxa (including members of the Proteobacteria, Bacteroidetes and Firmicutes phyla). Other copiotrophs, Actinobacteria and the oliogotrophic Acidobacteria showed increased relative abundance in nutrient-poor soils. Greater diversity based on 16S rRNA gene sequences and the Tax4Fun prediction of enhanced spore formation associated with nutrient-rich soils could indicate increased resilience of the bacterial community. The two sites had distinct diazotrophic communities with higher diversity in C. teretifolia soils that had less available nitrate and ammonium, potentially indicating increased resilience of the diazotroph community at this site. The C. teretifolia soils had more 16S rRNA gene and nifH copies per g soil than the nutrient rich site. However, the proportion of the bacterial community that was diazotrophic was similar in the two soils. We suggest that edaphic and vegetation factors are contributing to major differences in the composition and diversity of total bacterial and diazotrophic communities at these sites. We predict the differences in the communities at the two sites will result in different ...
    Keywords Medicine ; R ; Science ; Q
    Subject code 500
    Language English
    Publishing date 2017-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article: Comparison of D1´‐ and D1‐containing PS II reaction centre complexes under different environmental conditions in Synechocystis sp. PCC 6803

    Crawford, Tim S / Jocelyn P.S. Chua / Julian J. Eaton‐Rye / Kyrin R. Hanning / Tina C. Summerfield

    Plant, cell and environment. 2016 Aug., v. 39, no. 8

    2016  

    Abstract: In oxygenic photosynthesis, the D1 protein of Photosystem II is the primary target of photodamage and environmental stress can accelerate this process. The cyanobacterial response to stress includes transcriptional regulation of genes encoding D1, ... ...

    Abstract In oxygenic photosynthesis, the D1 protein of Photosystem II is the primary target of photodamage and environmental stress can accelerate this process. The cyanobacterial response to stress includes transcriptional regulation of genes encoding D1, including low‐oxygen‐induction of psbA1 encoding the D1´ protein in Synechocystis sp. PCC 6803. The psbA1 gene is also transiently up‐regulated in high light, and its deletion has been reported to increase ammonium‐induced photoinhibition. Therefore we investigated the role of D1´‐containing PS II centres under different environmental conditions. A strain containing only D1´‐PS II centres under aerobic conditions exhibited increased sensitivity to ammonium chloride and high light compared to a D1‐containing strain. Additionally a D1´‐PS II strain was outperformed by a D1‐PS II strain under normal conditions; however, a strain containing low‐oxygen‐induced D1´‐PS II centres was more resilient under high light than an equivalent D1 strain. These D1´‐containing centres had chlorophyll a fluorescence characteristics indicative of altered forward electron transport and back charge recombination with the donor side of PS II. Our results indicate D1´‐PS II centres are important in the reconfiguration of thylakoid electron transport in response to high light and low oxygen.
    Keywords aerobic conditions ; ammonium chloride ; chlorophyll ; D1 protein ; electron transfer ; fluorescence ; gene expression regulation ; genes ; oxygen ; photoinhibition ; photosystem II ; stress response ; Synechocystis ; thylakoids ; transcription (genetics)
    Language English
    Dates of publication 2016-08
    Size p. 1715-1726.
    Publishing place John Wiley & Sons, Ltd
    Document type Article
    Note JOURNAL ARTICLE
    ZDB-ID 391893-2
    ISSN 1365-3040 ; 0140-7791
    ISSN (online) 1365-3040
    ISSN 0140-7791
    DOI 10.1111/pce.12738
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  7. Article: The importance of the hydrophilic region of PsbL for the plastoquinone electron acceptor complex of Photosystem II

    Luo, Hao / Simon A. Jackson / Robert D. Fagerlund / Tina C. Summerfield / Julian J. Eaton-Rye

    Biochimica et biophysica acta. 2014 Sept., v. 1837, no. 9

    2014  

    Abstract: The PsbL protein is a 4.5kDa subunit at the monomer–monomer interface of Photosystem II (PS II) consisting of a single membrane-spanning domain and a hydrophilic stretch of ~15 residues facing the cytosolic (or stromal) side of the photosystem. Deletion ... ...

    Abstract The PsbL protein is a 4.5kDa subunit at the monomer–monomer interface of Photosystem II (PS II) consisting of a single membrane-spanning domain and a hydrophilic stretch of ~15 residues facing the cytosolic (or stromal) side of the photosystem. Deletion of conserved residues in the N-terminal region has been used to investigate the importance of this hydrophilic extension. Using Synechocystis sp. PCC 6803, three deletion strains: ∆(N6–N8), ∆(P11–V12) and ∆(E13–N15), have been created. The ∆(N6–N8) and ∆(P11–V12) strains remained photoautotrophic but were more susceptible to photodamage than the wild type; however, the ∆(E13–N15) cells had the most severe phenotype. The Δ(E13–N15) mutant showed decreased photoautotrophic growth, a reduced number of PS II centers, impaired oxygen evolution in the presence of PS II-specific electron acceptors, and was highly susceptible to photodamage. The decay kinetics of chlorophyll a variable fluorescence after a single turnover saturating flash and the sensitivity to low concentrations of PS II-directed herbicides in the Δ(E13–N15) strain indicate that the binding of plastoquinone to the QB-binding site had been altered such that the affinity of QB is reduced. In addition, the PS II-specific electron acceptor 2,5-dimethyl-p-benzoquinone was found to inhibit electron transfer through the quinone-acceptor complex of the ∆(E13–N15) strain. The PsbL Y20A mutant was also investigated and it exhibited increased susceptibility to photodamage and increased herbicide sensitivity. Our data suggest that the N-terminal hydrophilic region of PsbL influences forward electron transfer from QA through indirect interactions with the D–E loop of the D1 reaction center protein. Our results further indicate that disruption of interactions between the N-terminal region of PsbL and other PS II subunits or lipids destabilizes PS II dimer formation. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.
    Keywords Synechocystis sp. PCC 6803 ; chlorophyll ; electron transfer ; fluorescence ; herbicide resistance ; herbicides ; hydrophilicity ; lipids ; mutants ; oxygen production ; phenotype ; photosystem II
    Language English
    Dates of publication 2014-09
    Size p. 1435-1446.
    Publishing place Elsevier B.V.
    Document type Article
    ZDB-ID 282711-6
    ISSN 0005-2728 ; 0304-4173
    ISSN 0005-2728 ; 0304-4173
    DOI 10.1016/j.bbabio.2014.02.015
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  8. Article: Characterization of the cyanobacteria and associated bacterial community from an ephemeral wetland in New Zealand

    Secker, Nick H / David A. Orlovich / Jocelyn P. S. Chua / Les McNoe / Paul L. Guy / Rebecca E. Laurie / Tina C. Summerfield

    Journal of phycology. 2016 Oct., v. 52, no. 5

    2016  

    Abstract: New Zealand ephemeral wetlands are ecologically important, containing up to 12% of threatened native plant species and frequently exhibiting conspicuous cyanobacterial growth. In such environments, cyanobacteria and associated heterotrophs can influence ... ...

    Abstract New Zealand ephemeral wetlands are ecologically important, containing up to 12% of threatened native plant species and frequently exhibiting conspicuous cyanobacterial growth. In such environments, cyanobacteria and associated heterotrophs can influence primary production and nutrient cycling. Wetland communities, including bacteria, can be altered by increased nitrate and phosphate due to agricultural practices. We have characterized cyanobacteria from the Wairepo Kettleholes Conservation Area and their associated bacteria. Use of 16S rRNA amplicon sequencing identified several operational taxonomic units (OTUs) representing filamentous heterocystous and non‐heterocystous cyanobacterial taxa. One Nostoc OTU that formed macroscopic colonies dominated the cyanobacterial community. A diverse bacterial community was associated with the Nostoc colonies, including a core microbiome of 39 OTUs. Identity of the core microbiome associated with macroscopic Nostoc colonies was not changed by the addition of nutrients. One OTU was highly represented in all Nostoc colonies (27.6%–42.6% of reads) and phylogenetic analyses identified this OTU as belonging to the genus Sphingomonas. Scanning electron microscopy showed the absence of heterotrophic bacteria within the Nostoc colony but revealed a diverse community associated with the colonies on the external surface.
    Keywords bacteria ; bacterial communities ; biogeochemical cycles ; heterotrophs ; indigenous species ; microbiome ; nitrates ; Nostoc ; nutrients ; phosphates ; phylogeny ; plants (botany) ; primary productivity ; ribosomal RNA ; scanning electron microscopy ; Sphingomonas ; wetlands ; New Zealand
    Language English
    Dates of publication 2016-10
    Size p. 761-773.
    Publishing place John Wiley & Sons, Ltd
    Document type Article
    Note JOURNAL ARTICLE
    ZDB-ID 281226-5
    ISSN 1529-8817 ; 0022-3646
    ISSN (online) 1529-8817
    ISSN 0022-3646
    DOI 10.1111/jpy.12434
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

To top