LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: Generation of three induced pluripotent stem cell lines from a patient with Kabuki syndrome carrying the KMT2D p.R4198X mutation

    Tyson W. Lager / Junjun Zuo / Md Suhail Alam / Barbara Calhoun / Kasturi Haldar / Athanasia D. Panopoulos

    Stem Cell Research, Vol 62, Iss , Pp 102799- (2022)

    2022  

    Abstract: Kabuki syndrome (KS) is a rare genetic disorder typically characterized by facial abnormalities, developmental delay, cognitive dysfunction, and organ impairment. In this report, fibroblast cells obtained from a KS patient containing a heterozygous KMT2D ...

    Abstract Kabuki syndrome (KS) is a rare genetic disorder typically characterized by facial abnormalities, developmental delay, cognitive dysfunction, and organ impairment. In this report, fibroblast cells obtained from a KS patient containing a heterozygous KMT2D c.12592 C>T mutation (p.R4198X) were reprogrammed using non-integrative Sendai virus to generate three induced pluripotent stem cell (iPSC) clones. The iPSC lines retained the KS patient mutation, and displayed normal karyotypes, pluripotency marker expression, and the ability to differentiate into the three germ layers.
    Keywords Biology (General) ; QH301-705.5
    Language English
    Publishing date 2022-07-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Cell surface GRP78 promotes stemness in normal and neoplastic cells

    Clay Conner / Tyson W. Lager / Ian H. Guldner / Min-Zu Wu / Yuriko Hishida / Tomoaki Hishida / Sergio Ruiz / Amanda E. Yamasaki / Robert C. Gilson / Juan Carlos Izpisua Belmonte / Peter C. Gray / Jonathan A. Kelber / Siyuan Zhang / Athanasia D. Panopoulos

    Scientific Reports, Vol 10, Iss 1, Pp 1-

    2020  Volume 11

    Abstract: Abstract Reliable approaches to identify stem cell mechanisms that mediate aggressive cancer could have great therapeutic value, based on the growing evidence of embryonic signatures in metastatic cancers. However, how to best identify and target stem- ... ...

    Abstract Abstract Reliable approaches to identify stem cell mechanisms that mediate aggressive cancer could have great therapeutic value, based on the growing evidence of embryonic signatures in metastatic cancers. However, how to best identify and target stem-like mechanisms aberrantly acquired by cancer cells has been challenging. We harnessed the power of reprogramming to examine GRP78, a chaperone protein generally restricted to the endoplasmic reticulum in normal tissues, but which is expressed on the cell surface of human embryonic stem cells and many cancer types. We have discovered that (1) cell surface GRP78 (sGRP78) is expressed on iPSCs and is important in reprogramming, (2) sGRP78 promotes cellular functions in both pluripotent and breast cancer cells (3) overexpression of GRP78 in breast cancer cells leads to an induction of a CD24−/CD44+ tumor initiating cell (TIC) population (4) sGRP78+ breast cancer cells are enriched for stemness genes and appear to be a subset of TICs (5) sGRP78+ breast cancer cells show an enhanced ability to seed metastatic organ sites in vivo. These collective findings show that GRP78 has important functions in regulating both pluripotency and oncogenesis, and suggest that sGRP78 marks a stem-like population in breast cancer cells that has increased metastatic potential in vivo.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2020-02-01T00:00:00Z
    Publisher Nature Publishing Group
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top