LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 12

Search options

  1. Article ; Online: Uptake of tumor-derived microparticles induces metabolic reprogramming of macrophages in the early metastatic lung

    Kelly Kersten / Ran You / Sophia Liang / Kevin M. Tharp / Joshua Pollack / Valerie M. Weaver / Matthew F. Krummel / Mark B. Headley

    Cell Reports, Vol 42, Iss 6, Pp 112582- (2023)

    2023  

    Abstract: Summary: Pre-metastatic niche formation is a critical step during the metastatic spread of cancer. One way by which primary tumors prime host cells at future metastatic sites is through the shedding of tumor-derived microparticles as a consequence of ... ...

    Abstract Summary: Pre-metastatic niche formation is a critical step during the metastatic spread of cancer. One way by which primary tumors prime host cells at future metastatic sites is through the shedding of tumor-derived microparticles as a consequence of vascular sheer flow. However, it remains unclear how the uptake of such particles by resident immune cells affects their phenotype and function. Here, we show that ingestion of tumor-derived microparticles by macrophages induces a rapid metabolic and phenotypic switch that is characterized by enhanced mitochondrial mass and function, increased oxidative phosphorylation, and upregulation of adhesion molecules, resulting in reduced motility in the early metastatic lung. This reprogramming event is dependent on signaling through the mTORC1, but not the mTORC2, pathway and is induced by uptake of tumor-derived microparticles. Together, these data support a mechanism by which uptake of tumor-derived microparticles induces reprogramming of macrophages to shape their fate and function in the early metastatic lung.
    Keywords CP: Cancer ; CP: Metabolism ; Biology (General) ; QH301-705.5
    Subject code 610
    Language English
    Publishing date 2023-06-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Proteoglycans as Mediators of Cancer Tissue Mechanics

    Anna Barkovskaya / Alexander Buffone / Martin Žídek / Valerie M. Weaver

    Frontiers in Cell and Developmental Biology, Vol

    2020  Volume 8

    Abstract: Proteoglycans are a diverse group of molecules which are characterized by a central protein backbone that is decorated with a variety of linear sulfated glycosaminoglycan side chains. Proteoglycans contribute significantly to the biochemical and ... ...

    Abstract Proteoglycans are a diverse group of molecules which are characterized by a central protein backbone that is decorated with a variety of linear sulfated glycosaminoglycan side chains. Proteoglycans contribute significantly to the biochemical and mechanical properties of the interstitial extracellular matrix where they modulate cellular behavior by engaging transmembrane receptors. Proteoglycans also comprise a major component of the cellular glycocalyx to influence transmembrane receptor structure/function and mechanosignaling. Through their ability to initiate biochemical and mechanosignaling in cells, proteoglycans elicit profound effects on proliferation, adhesion and migration. Pathologies including cancer and cardiovascular disease are characterized by perturbed expression of proteoglycans where they compromise cell and tissue behavior by stiffening the extracellular matrix and increasing the bulkiness of the glycocalyx. Increasing evidence indicates that a bulky glycocalyx and proteoglycan-enriched extracellular matrix promote malignant transformation, increase cancer aggression and alter anti-tumor therapy response. In this review, we focus on the contribution of proteoglycans to mechanobiology in the context of normal and transformed tissues. We discuss the significance of proteoglycans for therapy response, and the current experimental strategies that target proteoglycans to sensitize cancer cells to treatment.
    Keywords proteoglycans ; GAG ; cancer ; mechanosignaling ; glycocalyx ; Biology (General) ; QH301-705.5
    Subject code 610
    Language English
    Publishing date 2020-11-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Immunosuppressive glycoproteins associate with breast tumor fibrosis and aggression

    Kevin James Metcalf / Mary-Kate Hayward / Eric Berens / Alastair J. Ironside / Connor Stashko / E. Shelley Hwang / Valerie M. Weaver

    Matrix Biology Plus, Vol 14, Iss , Pp 100105- (2022)

    2022  

    Abstract: Tumors feature elevated sialoglycoprotein content. Sialoglycoproteins promote tumor progression and are linked to immune suppression via the sialic acid-Siglec axis. Understanding factors that increase sialoglycoprotein biosynthesis in tumors could ... ...

    Abstract Tumors feature elevated sialoglycoprotein content. Sialoglycoproteins promote tumor progression and are linked to immune suppression via the sialic acid-Siglec axis. Understanding factors that increase sialoglycoprotein biosynthesis in tumors could identify approaches to improve patient response to immunotherapy. We quantified higher levels of sialoglycoproteins in the fibrotic regions within human breast tumor tissues. Human breast tumor subtypes, which are more fibrotic, similarly featured increased sialoglycoprotein content. Further analysis revealed the breast cancer cells as the primary cell type synthesizing and secreting the tumor tissue sialoglycoproteins and confirmed that the more aggressive, fibrotic breast cancer subtypes expressed the highest levels of sialoglycoprotein biosynthetic genes. The more aggressive breast cancer subtypes also featured greater infiltration of immunosuppressive SIGLEC7, SIGLEC9, and SIGLEC10-pos myeloid cells, indicating that triple-negative breast tumors had higher expression of both immunosuppressive Siglec receptors and their cognate ligands. The findings link sialoglycoprotein biosynthesis and secretion to tumor fibrosis and aggression in human breast tumors. The data suggest targeting of the sialic acid-Siglec axis may comprise an attractive therapeutic target particularly for the more aggressive HER2+ and triple-negative breast cancer subtypes.
    Keywords Sialic acid ; Sialoglycoproteins ; Siglec receptors ; Breast cancer ; Fibrosis ; Biology (General) ; QH301-705.5
    Subject code 616
    Language English
    Publishing date 2022-06-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: NCI's publication affiliation conundrum

    Susan Samson / Jason J. Northey / Irene Acerbi / Andrei Goga / Carl L. Flink / Valerie M. Weaver / Mark A. LaBarge

    Translational Oncology, Vol 16, Iss , Pp 101325- (2022)

    Reframing innovation to incentivize an equitable path for advocate representation

    2022  

    Abstract: Advocacy engagement has been at the forefront of National Cancer Institute (NCI) efforts to advance scientific discoveries and transform medical interventions. Nonetheless, the journey for advocates has been uneven. Case in Point: NCI publication ... ...

    Abstract Advocacy engagement has been at the forefront of National Cancer Institute (NCI) efforts to advance scientific discoveries and transform medical interventions. Nonetheless, the journey for advocates has been uneven. Case in Point: NCI publication affiliation rules of engagement pose unique equity challenges while raising questions about structural representation in biomedical research. Abiding by the core rationale that publication affiliation should be tailored to employment status, the NCI has systematically denied research advocate volunteers the opportunity to specifically list NCI as an institutional affiliation on academic publications. Unpacking advocate NCI publication affiliation restrictions and its links with advocacy heritage preservation and convergent science goals poses unique diversity, equity, and inclusion challenges and opportunities. Improving the quality of structural representation in biomedical research requires new theories of action and flexible planning to advance, promote and build capacity for strategic advocacy inclusion and equity within publication affiliation initiatives. Here we highlight several opportunities for how leadership might formulate a radically different vision for NCI's approach. This perspective interrogates the best way forward for ensuring that biomedical employee and volunteer advocate workforce publication affiliation intersections are characterized by increased creativity and representation parity. Imbuing the scientist and clinical researcher archetype with social dimensions, we join NCI critical thinkers in urging employees, funded academics, and volunteer citizen scientists to collectively assume the role as paladins of science and integrity who view the triumphs of making a difference in science alongside the social responsibility of promoting transdisciplinary professionalism and the democratization of science.
    Keywords Convergent science ; Cancer research advocacy ; Reframing innovation ; NCI publication affiliation practices ; Diversity ; equity and inclusion (DE&I) ; Advocacy heritage preservation ; Neoplasms. Tumors. Oncology. Including cancer and carcinogens ; RC254-282
    Subject code 001
    Language English
    Publishing date 2022-02-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Feeling Stress

    Josette M. Northcott / Ivory S. Dean / Janna K. Mouw / Valerie M. Weaver

    Frontiers in Cell and Developmental Biology, Vol

    The Mechanics of Cancer Progression and Aggression

    2018  Volume 6

    Abstract: The tumor microenvironment is a dynamic landscape in which the physical and mechanical properties evolve dramatically throughout cancer progression. These changes are driven by enhanced tumor cell contractility and expansion of the growing tumor mass, as ...

    Abstract The tumor microenvironment is a dynamic landscape in which the physical and mechanical properties evolve dramatically throughout cancer progression. These changes are driven by enhanced tumor cell contractility and expansion of the growing tumor mass, as well as through alterations to the material properties of the surrounding extracellular matrix (ECM). Consequently, tumor cells are exposed to a number of different mechanical inputs including cell–cell and cell-ECM tension, compression stress, interstitial fluid pressure and shear stress. Oncogenes engage signaling pathways that are activated in response to mechanical stress, thereby reworking the cell's intrinsic response to exogenous mechanical stimuli, enhancing intracellular tension via elevated actomyosin contraction, and influencing ECM stiffness and tissue morphology. In addition to altering their intracellular tension and remodeling the microenvironment, cells actively respond to these mechanical perturbations phenotypically through modification of gene expression. Herein, we present a description of the physical changes that promote tumor progression and aggression, discuss their interrelationship and highlight emerging therapeutic strategies to alleviate the mechanical stresses driving cancer to malignancy.
    Keywords cancer progression ; cell contractility ; mechanical stresses ; tissue tension ; solid stress ; ECM stiffness ; Biology (General) ; QH301-705.5
    Subject code 571
    Language English
    Publishing date 2018-02-01T00:00:00Z
    Publisher Frontiers Media S.A.
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article: A 3D tension bioreactor platform to study the interplay between ECM stiffness and tumor phenotype

    Cassereau, Luke / Guanqing Ou / Johnathon Lakins / Valerie M. Weaver / Yekaterina A. Miroshnikova

    Journal of biotechnology. 2015 Jan. 10, v. 193

    2015  

    Abstract: Extracellular matrix (ECM) structure, composition, and stiffness have profound effects on tissue development and pathologies such as cardiovascular disease and cancer. Accordingly, a variety of synthetic hydrogel systems have been designed to study the ... ...

    Abstract Extracellular matrix (ECM) structure, composition, and stiffness have profound effects on tissue development and pathologies such as cardiovascular disease and cancer. Accordingly, a variety of synthetic hydrogel systems have been designed to study the impact of ECM composition, density, mechanics, and topography on cell and tissue phenotype. However, these synthetic systems fail to accurately recapitulate the biological properties and structure of the native tissue ECM. Natural three dimensional (3D) ECM hydrogels, such as collagen or hyaluronic acid, feature many of the chemical and physical properties of tissue, yet, these systems have limitations including the inability to independently control biophysical properties such as stiffness and pore size. Here, we present a 3D tension bioreactor system that permits precise mechanical tuning of collagen hydrogel stiffness, while maintaining consistent composition and pore size. We achieve this by mechanically loading collagen hydrogels covalently-conjugated to a polydimethylsiloxane (PDMS) membrane to induce hydrogel stiffening. We validated the biological application of this system with oncogenically transformed mammary epithelial cell organoids embedded in a 3D collagen I hydrogel, either uniformly stiffened or calibrated to create a gradient of ECM stiffening, to visually demonstrate the impact of ECM stiffening on transformation and tumor cell invasion. As such, this bioreactor presents the first tunable 3D natural hydrogel system that is capable of independently assessing the role of ECM stiffness on tissue phenotype.
    Keywords bioreactors ; cardiovascular diseases ; cell invasion ; collagen ; epithelial cells ; extracellular matrix ; hyaluronic acid ; hydrocolloids ; mammary glands ; mechanics ; neoplasm cells ; neoplasms ; phenotype ; porosity ; topography
    Language English
    Dates of publication 2015-0110
    Size p. 66-69.
    Publishing place Elsevier B.V.
    Document type Article
    ZDB-ID 843647-2
    ISSN 1873-4863 ; 0168-1656 ; 1389-0352
    ISSN (online) 1873-4863
    ISSN 0168-1656 ; 1389-0352
    DOI 10.1016/j.jbiotec.2014.11.008
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  7. Article ; Online: Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree

    Audrey M Hendley / Arjun A Rao / Laura Leonhardt / Sudipta Ashe / Jennifer A Smith / Simone Giacometti / Xianlu L Peng / Honglin Jiang / David I Berrios / Mathias Pawlak / Lucia Y Li / Jonghyun Lee / Eric A Collisson / Mark S Anderson / Gabriela K Fragiadakis / Jen Jen Yeh / Chun Jimmie Ye / Grace E Kim / Valerie M Weaver /
    Matthias Hebrok

    eLife, Vol

    2021  Volume 10

    Abstract: To study disease development, an inventory of an organ's cell types and understanding of physiologic function is paramount. Here, we performed single-cell RNA-sequencing to examine heterogeneity of murine pancreatic duct cells, pancreatobiliary cells, ... ...

    Abstract To study disease development, an inventory of an organ's cell types and understanding of physiologic function is paramount. Here, we performed single-cell RNA-sequencing to examine heterogeneity of murine pancreatic duct cells, pancreatobiliary cells, and intrapancreatic bile duct cells. We describe an epithelial-mesenchymal transitory axis in our three pancreatic duct subpopulations and identify osteopontin as a regulator of this fate decision as well as human duct cell dedifferentiation. Our results further identify functional heterogeneity within pancreatic duct subpopulations by elucidating a role for geminin in accumulation of DNA damage in the setting of chronic pancreatitis. Our findings implicate diverse functional roles for subpopulations of pancreatic duct cells in maintenance of duct cell identity and disease progression and establish a comprehensive road map of murine pancreatic duct cell, pancreatobiliary cell, and intrapancreatic bile duct cell homeostasis.
    Keywords scRNA-seq ; pancreatic duct ligation ; Osteopontin ; Geminin ; duct heterogeneity ; Medicine ; R ; Science ; Q ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2021-05-01T00:00:00Z
    Publisher eLife Sciences Publications Ltd
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Spatiotemporal mosaic self-patterning of pluripotent stem cells using CRISPR interference

    Ashley RG Libby / David A Joy / Po-Lin So / Mohammad A Mandegar / Jonathon M Muncie / Federico N Mendoza-Camacho / Valerie M Weaver / Bruce R Conklin / Todd C McDevitt

    eLife, Vol

    2018  Volume 7

    Abstract: Morphogenesis involves interactions of asymmetric cell populations to form complex multicellular patterns and structures comprised of distinct cell types. However, current methods to model morphogenic events lack control over cell-type co-emergence and ... ...

    Abstract Morphogenesis involves interactions of asymmetric cell populations to form complex multicellular patterns and structures comprised of distinct cell types. However, current methods to model morphogenic events lack control over cell-type co-emergence and offer little capability to selectively perturb specific cell subpopulations. Our in vitro system interrogates cell-cell interactions and multicellular organization within human induced pluripotent stem cell (hiPSC) colonies. We examined effects of induced mosaic knockdown of molecular regulators of cortical tension (ROCK1) and cell-cell adhesion (CDH1) with CRISPR interference. Mosaic knockdown of ROCK1 or CDH1 resulted in differential patterning within hiPSC colonies due to cellular self-organization, while retaining an epithelial pluripotent phenotype. Knockdown induction stimulates a transient wave of differential gene expression within the mixed populations that stabilized in coordination with observed self-organization. Mosaic patterning enables genetic interrogation of emergent multicellular properties, which can facilitate better understanding of the molecular pathways that regulate symmetry-breaking during morphogenesis.
    Keywords pluripotent stem cells ; morphogenesis ; bio-engineering ; Medicine ; R ; Science ; Q ; Biology (General) ; QH301-705.5
    Subject code 571
    Language English
    Publishing date 2018-10-01T00:00:00Z
    Publisher eLife Sciences Publications Ltd
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: Comprehensive characterization of DNA methylation changes in Fuchs endothelial corneal dystrophy.

    Emily Khuc / Russell Bainer / Marie Wolf / Selene M Clay / Daniel J Weisenberger / Jacquelyn Kemmer / Valerie M Weaver / David G Hwang / Matilda F Chan

    PLoS ONE, Vol 12, Iss 4, p e

    2017  Volume 0175112

    Abstract: Transparency of the human cornea is necessary for vision. Fuchs Endothelial Corneal Dystrophy (FECD) is a bilateral, heritable degeneration of the corneal endothelium, and a leading indication for corneal transplantation in developed countries. While the ...

    Abstract Transparency of the human cornea is necessary for vision. Fuchs Endothelial Corneal Dystrophy (FECD) is a bilateral, heritable degeneration of the corneal endothelium, and a leading indication for corneal transplantation in developed countries. While the early onset, and rarer, form of FECD has been linked to COL8A2 mutations, the more common, late onset form of FECD has genetic mutations linked to only a minority of cases. Epigenetic modifications that occur in FECD are unknown. Here, we report on and compare the DNA methylation landscape of normal human corneal endothelial (CE) tissue and CE from FECD patients using the Illumina Infinium HumanMethylation450 (HM450) DNA methylation array. We show that DNA methylation profiles are distinct between control and FECD samples. Differentially methylated probes (10,961) were identified in the FECD samples compared with the control samples, with the majority of probes being hypermethylated in the FECD samples. Genes containing differentially methylated sites were disproportionately annotated to ontological categories involving cytoskeletal organization, ion transport, hematopoetic cell differentiation, and cellular metabolism. Our results suggest that altered DNA methylation patterns may contribute to loss of corneal transparency in FECD through a global accumulation of sporadic DNA methylation changes in genes critical to basic CE biological processes.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2017-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article ; Online: A bulky glycocalyx fosters metastasis formation by promoting G1 cell cycle progression

    Elliot C Woods / FuiBoon Kai / J Matthew Barnes / Kayvon Pedram / Michael W Pickup / Michael J Hollander / Valerie M Weaver / Carolyn R Bertozzi

    eLife, Vol

    2017  Volume 6

    Abstract: Metastasis depends upon cancer cell growth and survival within the metastatic niche. Tumors which remodel their glycocalyces, by overexpressing bulky glycoproteins like mucins, exhibit a higher predisposition to metastasize, but the role of mucins in ... ...

    Abstract Metastasis depends upon cancer cell growth and survival within the metastatic niche. Tumors which remodel their glycocalyces, by overexpressing bulky glycoproteins like mucins, exhibit a higher predisposition to metastasize, but the role of mucins in oncogenesis remains poorly understood. Here we report that a bulky glycocalyx promotes the expansion of disseminated tumor cells in vivo by fostering integrin adhesion assembly to permit G1 cell cycle progression. We engineered tumor cells to display glycocalyces of various thicknesses by coating them with synthetic mucin-mimetic glycopolymers. Cells adorned with longer glycopolymers showed increased metastatic potential, enhanced cell cycle progression, and greater levels of integrin-FAK mechanosignaling and Akt signaling in a syngeneic mouse model of metastasis. These effects were mirrored by expression of the ectodomain of cancer-associated mucin MUC1. These findings functionally link mucinous proteins with tumor aggression, and offer a new view of the cancer glycocalyx as a major driver of disease progression.
    Keywords glycocalyx ; mucins ; integrins ; metastasis ; cell proliferation ; Medicine ; R ; Science ; Q ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2017-12-01T00:00:00Z
    Publisher eLife Sciences Publications Ltd
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top