LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 3 of total 3

Search options

  1. Book ; Online: Molecular Docking Study of COVID-19 Main Protease with Clinically Approved Drugs

    Wafa, TACHOUA / Mohamed, KABRINE

    2020  

    Abstract: ... A novel strain of coronavirus, namely, Corona Virus Infection Disease 19 has been identified in Wuhan city of China in December 2019, continues to spread at a rapid rate worldwide. There are no specific therapies available and investigations regarding ...

    Abstract

    A novel strain of coronavirus, namely, Corona Virus Infection Disease 19 has been identified in Wuhan city of China in December 2019, continues to spread at a rapid rate worldwide. There are no specific therapies available and investigations regarding the treatment of this disease are still lacking. In order to identify a novel potent inhibitor we performed docking studies on the main virus protease with eight drugs belonging to four pharmacological classes: anti-malarial, anti-bacterial, anti-infective and anti-histamine. Among the eight studied compounds, Lymecycline and Mizolastine appear as potential inhibitors of this protease. These two compounds revealed a minimum binding energy of -8.87 and -8.71 Kcal/mol with 168 and 256 binding modes detected in the binding substrate pocket, respectively. Lymecycline and Mizolastine interact with specific residues in substrate binding cavity. Thus, Lymecycline and Mizolastione may serve as a tool to fight COVID-19 disease. However, this data need further in vitro and in vivo evaluation to repurpose these two drugs against COVID-19 disease.


    Keywords covid19
    Publisher American Chemical Society (ACS)
    Publishing country us
    Document type Book ; Online
    DOI 10.26434/chemrxiv.12318689.v1
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Book ; Online: An in-silico evaluation of COVID-19 main protease with clinically approved drugs

    Wafa, TACHOUA / Mohamed, KABRINE / Mushtaq, Mamona / Ul-Haq, Zaheer

    2020  

    Abstract: ... A novel strain of coronavirus, namely, SARS-CoV-2 identified in Wuhan city of China in December 2019, continues to spread at a rapid rate worldwide. There are no specific therapies available and investigations regarding the treatment of this ... ...

    Abstract

    A novel strain of coronavirus, namely, SARS-CoV-2 identified in Wuhan city of China in December 2019, continues to spread at a rapid rate worldwide. There are no specific therapies available and investigations regarding the treatment of this disease are still lacking. In order to identify a novel potent inhibitor, we performed blind docking studies on the main virus protease M<sup>pro</sup> with eight approved drugs belonging to four pharmacological classes such as: anti-malarial, anti-bacterial, anti-infective and anti-histamine. Among the eight studied compounds, Lymecycline and Mizolastine appear as potential inhibitors of this protease. When docked against M<sup>pro </sup>crystal structure, these two compounds revealed a minimum binding energy of -8.87 and -8.71 kcal/mol with 168 and 256 binding modes detected in the binding substrate pocket, respectively. Further, to study the interaction mechanism and conformational dynamics of protein-ligand complexes, Molecular dynamic simulation and MM/PBSA binding free calculations were performed. Our results showed that both Lymecycline and Mizolastine bind in the active site. And exhibited good binding affinities towards target protein. Moreover, the ADMET analysis also indicated drug-likeness properties. Thus it is suggested that the identified compounds can inhibit Chymotrypsin-like protease (3CL<sup>pro</sup>) of SARS-CoV-2.



    Keywords covid19
    Publisher American Chemical Society (ACS)
    Publishing country us
    Document type Book ; Online
    DOI 10.26434/chemrxiv.12318689
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Book ; Online: An in-silico evaluation of COVID-19 main protease with clinically approved drugs

    Wafa, TACHOUA / Mohamed, KABRINE / Mushtaq, Mamona / Ul-Haq, Zaheer

    2020  

    Abstract: ... A novel strain of coronavirus, namely, SARS-CoV-2 identified in Wuhan city of China in December 2019, continues to spread at a rapid rate worldwide. There are no specific therapies available and investigations regarding the treatment of this ... ...

    Abstract

    A novel strain of coronavirus, namely, SARS-CoV-2 identified in Wuhan city of China in December 2019, continues to spread at a rapid rate worldwide. There are no specific therapies available and investigations regarding the treatment of this disease are still lacking. In order to identify a novel potent inhibitor, we performed blind docking studies on the main virus protease M<sup>pro</sup> with eight approved drugs belonging to four pharmacological classes such as: anti-malarial, anti-bacterial, anti-infective and anti-histamine. Among the eight studied compounds, Lymecycline and Mizolastine appear as potential inhibitors of this protease. When docked against M<sup>pro </sup>crystal structure, these two compounds revealed a minimum binding energy of -8.87 and -8.71 kcal/mol with 168 and 256 binding modes detected in the binding substrate pocket, respectively. Further, to study the interaction mechanism and conformational dynamics of protein-ligand complexes, Molecular dynamic simulation and MM/PBSA binding free calculations were performed. Our results showed that both Lymecycline and Mizolastine bind in the active site. And exhibited good binding affinities towards target protein. Moreover, the ADMET analysis also indicated drug-likeness properties. Thus it is suggested that the identified compounds can inhibit Chymotrypsin-like protease (3CL<sup>pro</sup>) of SARS-CoV-2.



    Keywords covid19
    Publisher American Chemical Society (ACS)
    Publishing country us
    Document type Book ; Online
    DOI 10.26434/chemrxiv.12318689.v2
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top