LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Your last searches

  1. AU="Wonderlick, Daria R"
  2. AU=West Jason A.

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: Disentangling contact and ensemble epistasis in a riboswitch.

    Wonderlick, Daria R / Widom, Julia R / Harms, Michael J

    Biophysical journal

    2023  Volume 122, Issue 9, Page(s) 1600–1612

    Abstract: Mutations introduced into macromolecules often exhibit epistasis, where the effect of one mutation alters the effect of another. Knowing the mechanisms that lead to epistasis is important for understanding how macromolecules work and evolve, as well as ... ...

    Abstract Mutations introduced into macromolecules often exhibit epistasis, where the effect of one mutation alters the effect of another. Knowing the mechanisms that lead to epistasis is important for understanding how macromolecules work and evolve, as well as for effective macromolecular engineering. Here, we investigate the interplay between "contact epistasis" (epistasis arising from physical interactions between mutated residues) and "ensemble epistasis" (epistasis that occurs when a mutation redistributes the conformational ensemble of a macromolecule, thus changing the effect of the second mutation). We argue that the two mechanisms can be distinguished in allosteric macromolecules by measuring epistasis at differing allosteric effector concentrations. Contact epistasis manifests as nonadditivity in the microscopic equilibrium constants describing the conformational ensemble. This epistatic effect is independent of allosteric effector concentration. Ensemble epistasis manifests as nonadditivity in thermodynamic observables-such as ligand binding-that are determined by the distribution of ensemble conformations. This epistatic effect strongly depends on allosteric effector concentration. Using this framework, we experimentally investigated the origins of epistasis in three pairwise mutant cycles introduced into the adenine riboswitch aptamer domain by measuring ligand binding as a function of allosteric effector concentration. We found evidence for both contact and ensemble epistasis in all cycles. Furthermore, we found that the two mechanisms of epistasis could interact with each other. For example, in one mutant cycle we observed 6 kcal/mol of contact epistasis in a microscopic equilibrium constant. In that same cycle, the maximum epistasis in ligand binding was only 1.5 kcal/mol: shifts in the ensemble masked the contribution of contact epistasis. Finally, our work yields simple heuristics for identifying contact and ensemble epistasis based on measurements of a biochemical observable as a function of allosteric effector concentration.
    MeSH term(s) Riboswitch/genetics ; Epistasis, Genetic ; Ligands ; Thermodynamics ; Mutation
    Chemical Substances Riboswitch ; Ligands
    Language English
    Publishing date 2023-01-28
    Publishing country United States
    Document type Journal Article ; Research Support, U.S. Gov't, Non-P.H.S.
    ZDB-ID 218078-9
    ISSN 1542-0086 ; 0006-3495
    ISSN (online) 1542-0086
    ISSN 0006-3495
    DOI 10.1016/j.bpj.2023.01.033
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

  2. Article ; Online: Ensemble epistasis: thermodynamic origins of nonadditivity between mutations.

    Morrison, Anneliese J / Wonderlick, Daria R / Harms, Michael J

    Genetics

    2021  Volume 219, Issue 1

    Abstract: Epistasis-when mutations combine nonadditively-is a profoundly important aspect of biology. It is often difficult to understand its mechanistic origins. Here, we show that epistasis can arise from the thermodynamic ensemble, or the set of interchanging ... ...

    Abstract Epistasis-when mutations combine nonadditively-is a profoundly important aspect of biology. It is often difficult to understand its mechanistic origins. Here, we show that epistasis can arise from the thermodynamic ensemble, or the set of interchanging conformations a protein adopts. Ensemble epistasis occurs because mutations can have different effects on different conformations of the same protein, leading to nonadditive effects on its average, observable properties. Using a simple analytical model, we found that ensemble epistasis arises when two conditions are met: (1) a protein populates at least three conformations and (2) mutations have differential effects on at least two conformations. To explore the relative magnitude of ensemble epistasis, we performed a virtual deep-mutational scan of the allosteric Ca2+ signaling protein S100A4. We found that 47% of mutation pairs exhibited ensemble epistasis with a magnitude on the order of thermal fluctuations. We observed many forms of epistasis: magnitude, sign, and reciprocal sign epistasis. The same mutation pair could even exhibit different forms of epistasis under different environmental conditions. The ubiquity of thermodynamic ensembles in biology and the pervasiveness of ensemble epistasis in our dataset suggests that it may be a common mechanism of epistasis in proteins and other macromolecules.
    MeSH term(s) Epistasis, Genetic
    Language English
    Publishing date 2021-11-19
    Publishing country United States
    Document type Journal Article ; Research Support, N.I.H., Extramural ; Research Support, U.S. Gov't, Non-P.H.S.
    ZDB-ID 2167-2
    ISSN 1943-2631 ; 0016-6731
    ISSN (online) 1943-2631
    ISSN 0016-6731
    DOI 10.1093/genetics/iyab105
    Database MEDical Literature Analysis and Retrieval System OnLINE

    More links

    Kategorien

To top