LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 1 of total 1

Search options

Article ; Online: IRF4 haploinsufficiency in a family with Whipple’s disease

Antoine Guérin / Gaspard Kerner / Nico Marr / Janet G Markle / Florence Fenollar / Natalie Wong / Sabri Boughorbel / Danielle T Avery / Cindy S Ma / Salim Bougarn / Matthieu Bouaziz / Vivien Béziat / Erika Della Mina / Carmen Oleaga-Quintas / Tomi Lazarov / Lisa Worley / Tina Nguyen / Etienne Patin / Caroline Deswarte /
Rubén Martinez-Barricarte / Soraya Boucherit / Xavier Ayral / Sophie Edouard / Stéphanie Boisson-Dupuis / Vimel Rattina / Benedetta Bigio / Guillaume Vogt / Frédéric Geissmann / Lluis Quintana-Murci / Damien Chaussabel / Stuart G Tangye / Didier Raoult / Laurent Abel / Jacinta Bustamante / Jean-Laurent Casanova

eLife, Vol

2018  Volume 7

Abstract: Most humans are exposed to Tropheryma whipplei (Tw). Whipple’s disease (WD) strikes only a small minority of individuals infected with Tw (<0.01%), whereas asymptomatic chronic carriage is more common (<25%). We studied a multiplex kindred, containing ... ...

Abstract Most humans are exposed to Tropheryma whipplei (Tw). Whipple’s disease (WD) strikes only a small minority of individuals infected with Tw (<0.01%), whereas asymptomatic chronic carriage is more common (<25%). We studied a multiplex kindred, containing four WD patients and five healthy Tw chronic carriers. We hypothesized that WD displays autosomal dominant (AD) inheritance, with age-dependent incomplete penetrance. We identified a single very rare non-synonymous mutation in the four patients: the private R98W variant of IRF4, a transcription factor involved in immunity. The five Tw carriers were younger, and also heterozygous for R98W. We found that R98W was loss-of-function, modified the transcriptome of heterozygous leukocytes following Tw stimulation, and was not dominant-negative. We also found that only six of the other 153 known non-synonymous IRF4 variants were loss-of-function. Finally, we found that IRF4 had evolved under purifying selection. AD IRF4 deficiency can underlie WD by haploinsufficiency, with age-dependent incomplete penetrance.
Keywords Whipple's disease ; primary immunodeficiency ; IRF4 ; haploinsufficiency ; Medicine ; R ; Science ; Q ; Biology (General) ; QH301-705.5
Subject code 610
Language English
Publishing date 2018-03-01T00:00:00Z
Publisher eLife Sciences Publications Ltd
Document type Article ; Online
Database BASE - Bielefeld Academic Search Engine (life sciences selection)

More links

Kategorien

To top