LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: Binaphthyl-Based Chiral Macrocyclic Hosts for the Selective Recognition of Iodide Anions

    Zong-Cheng Wang / Ying-Zi Tan / Lin-Li Tang / Fei Zeng

    Molecules, Vol 28, Iss 4784, p

    2023  Volume 4784

    Abstract: In this study, we explorethe synthesis of binaphthyl-based chiral macrocyclic hosts for the first time. They exhibited the selective recognition abilities of iodide anions which can be favored over those of other anions (AcO − , NO 3 − , ClO 4 − , HSO 4 − ...

    Abstract In this study, we explorethe synthesis of binaphthyl-based chiral macrocyclic hosts for the first time. They exhibited the selective recognition abilities of iodide anions which can be favored over those of other anions (AcO − , NO 3 − , ClO 4 − , HSO 4 − , Br − , PF 6 − , H 2 PO 4 − , BF 4 − , and CO 3 F 3 S − ), as confirmed by UV-vis, HRMS, and 1 H NMR spectroscopy experiments, as well as DFT calculations. Neutral aryl C–H···anion interactions play an important role in the formation complexes. The recognition process can be observed by the naked eye.
    Keywords binaphthyl ; chiral macrocyclic ; iodide anion ; recognition ; supramolecular chemistry ; Organic chemistry ; QD241-441
    Language English
    Publishing date 2023-06-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Main Active Components and Cell Cycle Regulation Mechanism of Astragali Radix and Angelicae Sinensis Radix in the Treatment of Ox-LDL-Induced HUVECs Injury and Inhibition of Their Cell Cycle

    Cai-Xia Liu / Ying-Zi Tan / Chang-Qing Deng

    Evidence-Based Complementary and Alternative Medicine, Vol

    2021  Volume 2021

    Abstract: To explore the main active components and effects of cell cycle regulation mechanism of Astragali radix (AR) and Angelicae sinensis radix (ASR) on oxidative damage in vascular endothelial cells, a model of oxidative damage in human umbilical vein ... ...

    Abstract To explore the main active components and effects of cell cycle regulation mechanism of Astragali radix (AR) and Angelicae sinensis radix (ASR) on oxidative damage in vascular endothelial cells, a model of oxidative damage in human umbilical vein endothelial cells (HUVECs) induced by oxidized low-density lipoprotein (ox-LDL) treatment was developed. Based on the “knock-out/knock-in” model of the target component, cell viability, intracellular reactive oxygen species (ROS), and lactate dehydrogenase (LDH) leakage were assessed by Cell Counting Kit-8 assay, fluorescent probe 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA), and colorimetric assay, respectively, to evaluate the protective effect of the active components of AR and ASR (astragaloside IV (AS IV), astragaloside I (AS I), formononetin (FRM), calycosin (CAL), calycosin-7-O-β-D glucoside (CLG), and ferulic acid (FRA)) against oxidative damage. The cell cycle and expression of genes encoding cyclins and cyclin-dependent kinases (CDKs) were observed using flow cytometry and quantitative real-time polymerase chain reaction. The results showed that the combination of active components (ACC) significantly inhibited the decrease in cell viability as well as the increase in ROS and LDH release in HUVECs induced by ox-LDL treatment. AS IV and FRM promoted the proliferation of HUVECs but the proliferation index was decreased in the AS I and FRA groups; this inhibitory effect was counteracted by the ACC. The ACC reduced and increased the proportion of positive cells in G1 and S phases, respectively, followed by the upregulation of cyclin A (CCNA), cyclin E (CCNE), and CDK2 mRNA expression and downregulation of cyclin B (CCNB), cyclin D1 (CCND1), CDK1, CDK4, and CDK6 mRNA expression, which significantly mitigated inhibition of HUVECs proliferation induced by ox-LDL treatment. Taken together, AS IV, AS I, FRM, CAL, CLG, and FRA were the primary pharmacodynamic substances of AR and ASR that alleviated oxidative injury in HUVECs. ACC mitigated the upregulation of ...
    Keywords Other systems of medicine ; RZ201-999
    Subject code 571
    Language English
    Publishing date 2021-01-01T00:00:00Z
    Publisher Hindawi Limited
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top