LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: ZNF143 facilitates the growth and migration of glioma cells by regulating KPNA2-mediated Hippo signalling

    Yan Chen / Jitao Li / Jiangchun Ma / Yizhong Bao

    Scientific Reports, Vol 13, Iss 1, Pp 1-

    2023  Volume 12

    Abstract: Abstract The disordered expression of ZNF143 is closely related to the malignant progression of tumours. However, the basic control mechanism of ZNF143 in glioma has not yet been clarified. Therefore, we tried to find a new pathway to illustrate the ... ...

    Abstract Abstract The disordered expression of ZNF143 is closely related to the malignant progression of tumours. However, the basic control mechanism of ZNF143 in glioma has not yet been clarified. Therefore, we tried to find a new pathway to illustrate the function of ZNF143 in glioma. To explore the function of KPNA2 in the development of glioma, we used survival analysis by the Kaplan‒Meier method to assess the overall survival (OS) of patients with low and high KPNA2 expression in the TCGA and CGGA cohorts. Western blotting assays and RT‒PCR assays were utilized to determine the expression level of KPNA2 in glioma cells. The interaction between ZNF143 and KPNA2 was confirmed by ChIP assays. Proliferation was assessed by CCK-8 assays, and migration was evaluated by wound healing and Transwell assays. Apoptosis was determined by flow cytometry, and the expression level of YAP/TAZ was visualized using an immunofluorescence assay. The expression levels of LATS1, LATS2, YAP1, and p-YAP1 were determined. Patients with low KPNA2 expression showed a better prognosis than those with high KPNA2 expression. KPNA2 was found to be upregulated in human glioma cells. ZNF143 can bind to the promoter region of KPNA2. Downregulation of ZNF143 and KPNA2 can activate the Hippo signalling pathway and reduce YAP/TAZ expression in human glioma cells, thus inducing apoptosis of human glioma cells and weakening their proliferation, migration and invasion. In conclusion, ZNF143 mediates the Hippo/YAP signalling pathway and inhibits the growth and migration of glioma cells by regulating KPNA2.
    Keywords Medicine ; R ; Science ; Q
    Subject code 570
    Language English
    Publishing date 2023-07-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Oligosaccharides from Sargassum thunbergii inhibit osteoclast differentiation via regulation of IRF-8 signaling

    Weihua Jin / Fen Chen / Qiufu Fang / Genxiang Mao / Yizhong Bao

    Experimental Gerontology, Vol 172, Iss , Pp 112057- (2023)

    2023  

    Abstract: Osteoporosis (OP) is a systemic bone degenerative disease characterized by low bone mass and deteriorated microarchitecture of bone tissue, causing high morbidity and mortality rates. Bone resorption by overactivated osteoclasts (OCs) is the main cause ... ...

    Abstract Osteoporosis (OP) is a systemic bone degenerative disease characterized by low bone mass and deteriorated microarchitecture of bone tissue, causing high morbidity and mortality rates. Bone resorption by overactivated osteoclasts (OCs) is the main cause of osteoporosis. Glucuronomannan and its oligomers (Gs) and their sulfated derivatives (SGs) were previously prepared. The anti-osteoporosis activities of these glycans were evaluated. Firstly, we determined the viability of RAW264.7 by CCK-8 test. Nextly, we investigated the inhibitory effects of Gs and SGs on the differentiation of RAW264.7 cells into OCs using tartrate-resistant acid phosphatase (TRAP) staining, F-actin ring staining, qualitative reverse-transcription polymerase chain reaction(qRT-PCR) and western blotting. TRAP staining revealed that Gs significantly blocked RANKL-induced OC generation while SGs did not exhibit this ability. F-actin staining assays demonstrated that Gs inhibits RANKL-induced actin ring formation. qRT-PCR analyses indicated that Gs dose-dependently inhibited the expression of OCs marker genes including Trap, NFATc1, c-Fos, DC-Stamp and ATP60 during the differentiation process, while SGs did not suppress. Regarding the mechanism of Gs, it was found that Gs suppressed osteoclastogenesis via inhibiting the degradation of IRF-8 and interfering with NF-κB pathway activation. Together, these results suggest that Gs have the ability to inhibit osteoclastogenesis by modulating IRF-8 signaling.
    Keywords Osteoporosis ; Glucuronomannan ; Oligosaccharides ; Osteoclast ; NF-κB ; IRF-8 ; Medicine ; R ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2023-02-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top